Summary

You searched for: sol=48

Your search produced 15 matches

You can download all data as plain text or as JSON

1

New Number: 2.15 |  AESZ: 38  |  Superseeker: 48 73328  |  Hash: 9ce26bb7405c3b98d8aeae5b1102c611  

Degree: 2

\(\theta^4-2^{4} x(4\theta+1)(4\theta+3)(3\theta^2+3\theta+1)+2^{9} x^{2}(4\theta+1)(4\theta+3)(4\theta+5)(4\theta+7)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 8400, 2069760, 609008400, ...
--> OEIS
Normalized instanton numbers (n0=1): 48, 998, 73328, 7388135, 857248528, ... ; Common denominator:...

Discriminant

\((512z-1)(256z-1)\)

Local exponents

\(0\)\(\frac{ 1}{ 512}\)\(\frac{ 1}{ 256}\)\(\infty\)
\(0\)\(0\)\(0\)\(\frac{ 1}{ 4}\)
\(0\)\(1\)\(1\)\(\frac{ 3}{ 4}\)
\(0\)\(1\)\(1\)\(\frac{ 5}{ 4}\)
\(0\)\(2\)\(2\)\(\frac{ 7}{ 4}\)

Note:

Hadamard product $C\ast d$

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

2

New Number: 2.17 |  AESZ: 111  |  Superseeker: 32 1440  |  Hash: d8535e0f3d0bfd4ebcc9c042df43c218  

Degree: 2

\(\theta^4-2^{4} x(2\theta+1)^2(8\theta^2+8\theta+3)+2^{12} x^{2}(2\theta+1)^2(2\theta+3)^2\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 5904, 940800, 169520400, ...
--> OEIS
Normalized instanton numbers (n0=1): 32, -96, 1440, 19704, -14496, ... ; Common denominator:...

Discriminant

\((256z-1)^2\)

Local exponents

\(0\)\(\frac{ 1}{ 256}\)\(\infty\)
\(0\)\(0\)\(\frac{ 1}{ 2}\)
\(0\)\(\frac{ 1}{ 2}\)\(\frac{ 1}{ 2}\)
\(0\)\(\frac{ 1}{ 2}\)\(\frac{ 3}{ 2}\)
\(0\)\(1\)\(\frac{ 3}{ 2}\)

Note:

B-Incarnations:
Fibre product 81111- x 18--21, 4*11-- x 53211,
Double Octics: D.O.8, D.O.36, D.O.73, D.O.249, D.O.258,D.O.265

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

3

New Number: 3.34 |  AESZ:  |  Superseeker: 16 1744  |  Hash: 931a876bfe4d4aa192c6e18e74047640  

Degree: 3

\(\theta^4-2^{4} x\left(25\theta^4+50\theta^3+43\theta^2+18\theta+3\right)+2^{11} x^{2}(26\theta^2+52\theta+21)(\theta+1)^2-2^{16} 3^{2} x^{3}(\theta+1)(\theta+2)(2\theta+1)(2\theta+5)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 3984, 387840, 40818960, ...
--> OEIS
Normalized instanton numbers (n0=1): 16, -110, 1744, -29526, 644016, ... ; Common denominator:...

Discriminant

\(-(144z-1)(-1+128z)^2\)

Local exponents

\(0\)\(\frac{ 1}{ 144}\)\(\frac{ 1}{ 128}\)\(\infty\)
\(0\)\(0\)\(0\)\(\frac{ 1}{ 2}\)
\(0\)\(1\)\(\frac{ 1}{ 2}\)\(1\)
\(0\)\(1\)\(\frac{ 1}{ 2}\)\(2\)
\(0\)\(2\)\(1\)\(\frac{ 5}{ 2}\)

Note:

Operator equivalent to AESZ 107 $=d \ast d$

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

4

New Number: 4.36 |  AESZ: 109  |  Superseeker: 1434/7 18676572/7  |  Hash: bca2938ac7fa09f5bdc395cab75caf82  

Degree: 4

\(7^{2} \theta^4-2 3 7 x\left(1272\theta^4+2508\theta^3+1779\theta^2+525\theta+56\right)+2^{2} 3 x^{2}\left(43704\theta^4+38088\theta^3-25757\theta^2-20608\theta-3360\right)-2^{4} 3^{3} x^{3}\left(2736\theta^4-1512\theta^3-1672\theta^2-357\theta-14\right)-2^{6} 3^{5} x^{4}(3\theta+1)(2\theta+1)^2(3\theta+2)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 15840, 8148000, 5126536800, ...
--> OEIS
Normalized instanton numbers (n0=1): 1434/7, 14718, 18676572/7, 4988009280/7, 1646787631350/7, ... ; Common denominator:...

Discriminant

\(-(432z^2+1080z-1)(-7+36z)^2\)

Local exponents

\(-\frac{ 5}{ 4}-\frac{ 13}{ 18}\sqrt{ 3}\)\(0\)\(s_1\)\(s_2\)\(-\frac{ 5}{ 4}+\frac{ 13}{ 18}\sqrt{ 3}\)\(\frac{ 7}{ 36}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 3}\)
\(1\)\(0\)\(1\)\(1\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(1\)\(0\)\(1\)\(1\)\(1\)\(3\)\(\frac{ 1}{ 2}\)
\(2\)\(0\)\(2\)\(2\)\(2\)\(4\)\(\frac{ 2}{ 3}\)

Note:

Sporadic Operator.

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

5

New Number: 4.45 |  AESZ: 233  |  Superseeker: 80 104976  |  Hash: 03f67459f6d678669f766c99281b1e79  

Degree: 4

\(\theta^4-2^{4} x\left(83\theta^4+94\theta^3+71\theta^2+24\theta+3\right)+2^{11} 3 x^{2}\left(101\theta^4+191\theta^3+174\theta^2+71\theta+10\right)-2^{16} 3^{2} x^{3}\left(203\theta^4+432\theta^3+333\theta^2+102\theta+11\right)+2^{23} 3^{3} x^{4}(3\theta+1)(2\theta+1)^2(3\theta+2)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 9360, 2553600, 813027600, ...
--> OEIS
Normalized instanton numbers (n0=1): 80, 2794, 104976, 5367454, 508265072, ... ; Common denominator:...

Discriminant

\((512z-1)(432z-1)(-1+192z)^2\)

Local exponents

\(0\)\(\frac{ 1}{ 512}\)\(\frac{ 1}{ 432}\)\(\frac{ 1}{ 192}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 3}\)
\(0\)\(1\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(0\)\(1\)\(1\)\(3\)\(\frac{ 1}{ 2}\)
\(0\)\(2\)\(2\)\(4\)\(\frac{ 2}{ 3}\)

Note:

Sporadic Operator.

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

6

New Number: 4.46 |  AESZ: 237  |  Superseeker: 208 1218192  |  Hash: 52c18dd4477f6548dd3b185e97b94c20  

Degree: 4

\(\theta^4-2^{4} x\left(46\theta^4+128\theta^3+91\theta^2+27\theta+3\right)-2^{9} 3 x^{2}\left(74\theta^4-16\theta^3-231\theta^2-127\theta-20\right)+2^{14} 3^{2} x^{3}\left(14\theta^4+216\theta^3+175\theta^2+51\theta+5\right)+2^{19} 3^{3} x^{4}(3\theta+1)(2\theta+1)^2(3\theta+2)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 12240, 4972800, 2489533200, ...
--> OEIS
Normalized instanton numbers (n0=1): 208, 5874, 1218192, 220754467, 56417503216, ... ; Common denominator:...

Discriminant

\((864z-1)(64z-1)(1+96z)^2\)

Local exponents

\(-\frac{ 1}{ 96}\)\(0\)\(\frac{ 1}{ 864}\)\(\frac{ 1}{ 64}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 3}\)
\(1\)\(0\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(3\)\(0\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(4\)\(0\)\(2\)\(2\)\(\frac{ 2}{ 3}\)

Note:

This is operator "4.46" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

7

New Number: 4.48 |  AESZ: 241  |  Superseeker: 320 19748928  |  Hash: b4d16d8dd1eb7839630ecf8e8d242023  

Degree: 4

\(\theta^4-2^{4} x\left(152\theta^4+160\theta^3+110\theta^2+30\theta+3\right)+2^{10} 3 x^{2}\left(428\theta^4+176\theta^3-299\theta^2-170\theta-25\right)-2^{17} 3^{2} x^{3}\left(136\theta^4-216\theta^3-180\theta^2-51\theta-5\right)-2^{24} 3^{3} x^{4}(3\theta+1)(2\theta+1)^2(3\theta+2)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 26640, 21907200, 22048765200, ...
--> OEIS
Normalized instanton numbers (n0=1): 320, 61084, 19748928, 9428973876, 5618509433280, ... ; Common denominator:...

Discriminant

\(-(64z+1)(1728z-1)(-1+384z)^2\)

Local exponents

\(-\frac{ 1}{ 64}\)\(0\)\(\frac{ 1}{ 1728}\)\(\frac{ 1}{ 384}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 3}\)
\(1\)\(0\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(1\)\(0\)\(1\)\(3\)\(\frac{ 1}{ 2}\)
\(2\)\(0\)\(2\)\(4\)\(\frac{ 2}{ 3}\)

Note:

Sporadic Operator.

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

8

New Number: 4.54 |  AESZ: 265  |  Superseeker: 1056 138459552  |  Hash: fad89ac60b7ab4118edfed4cf6350d0c  

Degree: 4

\(\theta^4+2^{4} 3 x\left(96\theta^4-96\theta^3-60\theta^2-12\theta-1\right)+2^{13} 3 x^{2}\left(288\theta^4-144\theta^3+526\theta^2+206\theta+27\right)+2^{20} 3^{3} x^{3}\left(288\theta^4+864\theta^3+652\theta^2+204\theta+23\right)+2^{30} 3^{5} x^{4}(3\theta+1)(2\theta+1)^2(3\theta+2)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, -30960, -11961600, 15342742800, ...
--> OEIS
Normalized instanton numbers (n0=1): 1056, -360672, 138459552, -50965971720, 20236543243104, ... ; Common denominator:...

Discriminant

\((1769472z^2+1)(1+2304z)^2\)

Local exponents

\(-\frac{ 1}{ 2304}\)\(0-\frac{ 1}{ 2304}\sqrt{ 3}I\)\(0\)\(s_1\)\(s_2\)\(0+\frac{ 1}{ 2304}\sqrt{ 3}I\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 3}\)
\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(3\)\(1\)\(0\)\(1\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(4\)\(2\)\(0\)\(2\)\(2\)\(2\)\(\frac{ 2}{ 3}\)

Note:

Sporadic Operator.

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

9

New Number: 4.73 |  AESZ: 362  |  Superseeker: -2656 -2493879008  |  Hash: 57a424b3b32b72260817cb8c45a8ae8f  

Degree: 4

\(\theta^4-2^{4} x\left(1088\theta^4-416\theta^3-212\theta^2-4\theta+3\right)+2^{12} 3^{3} x^{2}\left(928\theta^4-224\theta^3+448\theta^2+108\theta+9\right)-2^{20} 3^{6} x^{3}\left(320\theta^4+288\theta^3+220\theta^2+72\theta+9\right)+2^{28} 3^{10} x^{4}\left((2\theta+1)^4\right)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, -40176, -103200000, -153639990000, ...
--> OEIS
Normalized instanton numbers (n0=1): -2656, -1985680, -2493879008, -3906525894360, -6910084057179168, ... ; Common denominator:...

Discriminant

\((5308416z^2-3584z+1)(-1+6912z)^2\)

Local exponents

\(0\)\(s_2\)\(s_1\)\(\frac{ 1}{ 6912}\)\(\frac{ 7}{ 20736}-\frac{ 1}{ 5184}\sqrt{ 2}I\)\(\frac{ 7}{ 20736}+\frac{ 1}{ 5184}\sqrt{ 2}I\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 2}\)
\(0\)\(1\)\(1\)\(1\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(0\)\(1\)\(1\)\(3\)\(1\)\(1\)\(\frac{ 1}{ 2}\)
\(0\)\(2\)\(2\)\(4\)\(2\)\(2\)\(\frac{ 1}{ 2}\)

Note:

Sporadic Operator. There is a second MUM-point corresponding to Operator AESZ 361/4.72

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

10

New Number: 5.121 |  AESZ:  |  Superseeker: 272 1143760  |  Hash: 36da1ed5dd29b416116a3ac9f4b4c4da  

Degree: 5

\(\theta^4-2^{4} x\left(17\theta^4+130\theta^3+91\theta^2+26\theta+3\right)-2^{11} x^{2}\left(150\theta^4+204\theta^3-163\theta^2-110\theta-21\right)-2^{16} x^{3}\left(564\theta^4-648\theta^3-595\theta^2-189\theta-18\right)+2^{24} x^{4}(2\theta+1)(52\theta^3+66\theta^2+29\theta+3)-2^{32} x^{5}(2\theta+1)(\theta+1)^2(2\theta+3)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 10128, 3521280, 1516853520, ...
--> OEIS
Normalized instanton numbers (n0=1): 272, -142, 1143760, 76778666, 28997783216, ... ; Common denominator:...

Discriminant

\(-(16z-1)(16384z^2-768z+1)(1+256z)^2\)

Local exponents

\(-\frac{ 1}{ 256}\)\(0\)\(\frac{ 3}{ 128}-\frac{ 1}{ 64}\sqrt{ 2}\)\(\frac{ 3}{ 128}+\frac{ 1}{ 64}\sqrt{ 2}\)\(\frac{ 1}{ 16}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 2}\)
\(1\)\(0\)\(1\)\(1\)\(1\)\(1\)
\(3\)\(0\)\(1\)\(1\)\(1\)\(1\)
\(4\)\(0\)\(2\)\(2\)\(2\)\(\frac{ 3}{ 2}\)

Note:

B-Incarnation as fibre product 62211- x 182--1

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

11

New Number: 5.133 |  AESZ:  |  Superseeker: 192 1016256  |  Hash: 0f3cb34d2bc462fbc58cdf15040595d1  

Degree: 5

\(\theta^4+2^{4} x\left(24\theta^4-96\theta^3-70\theta^2-22\theta-3\right)-2^{10} x^{2}\left(124\theta^4+496\theta^3-271\theta^2-202\theta-45\right)-2^{17} 3^{2} x^{3}\left(32\theta^4-56\theta^3-66\theta^2-31\theta-5\right)+2^{24} 3^{3} x^{4}(\theta+1)(2\theta+1)(6\theta^2+11\theta+6)+2^{32} 3^{3} x^{5}(2\theta+1)(\theta+1)^2(2\theta+3)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 5136, 710400, 112104720, ...
--> OEIS
Normalized instanton numbers (n0=1): 192, -9940, 1016256, -134713756, 20854352960, ... ; Common denominator:...

Discriminant

\((256z-1)(64z+1)(192z-1)(1+384z)^2\)

Local exponents

\(-\frac{ 1}{ 64}\)\(-\frac{ 1}{ 384}\)\(0\)\(\frac{ 1}{ 256}\)\(\frac{ 1}{ 192}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 2}\)
\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)
\(1\)\(3\)\(0\)\(1\)\(1\)\(1\)
\(2\)\(4\)\(0\)\(2\)\(2\)\(\frac{ 3}{ 2}\)

Note:

B-incarnation as self-fibre product S53211

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

12

New Number: 5.13 |  AESZ: 83  |  Superseeker: -80 -174096  |  Hash: 171e1251d8e4f7de878d0d07de6f58ab  

Degree: 5

\(\theta^4-2^{4} x\left(88\theta^4+32\theta^3+33\theta^2+17\theta+3\right)+2^{9} x^{2}\left(1504\theta^4+1408\theta^3+1436\theta^2+596\theta+93\right)-2^{18} x^{3}\left(776\theta^4+1344\theta^3+1381\theta^2+651\theta+117\right)+2^{23} 3 x^{4}(2\theta+1)(512\theta^3+1152\theta^2+1054\theta+339)-2^{31} 3^{2} x^{5}(2\theta+1)(4\theta+3)(4\theta+5)(2\theta+3)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 5328, 779520, 131619600, ...
--> OEIS
Normalized instanton numbers (n0=1): -80, -2954, -174096, -13270953, -1179175536, ... ; Common denominator:...

Discriminant

\(-(128z-1)(384z-1)^2(256z-1)^2\)

Local exponents

\(0\)\(\frac{ 1}{ 384}\)\(\frac{ 1}{ 256}\)\(\frac{ 1}{ 128}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 2}\)
\(0\)\(1\)\(\frac{ 1}{ 2}\)\(1\)\(\frac{ 3}{ 4}\)
\(0\)\(3\)\(\frac{ 1}{ 2}\)\(1\)\(\frac{ 5}{ 4}\)
\(0\)\(4\)\(1\)\(2\)\(\frac{ 3}{ 2}\)

Note:

This is operator "5.13" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

13

New Number: 12.12 |  AESZ:  |  Superseeker: 48 3184  |  Hash: 2b1c995b5f2826ce90fc016ad86fd66f  

Degree: 12

\(\theta^4-2^{4} x\left(27\theta^4+42\theta^3+37\theta^2+16\theta+3\right)+2^{9} x^{2}\left(139\theta^4+430\theta^3+579\theta^2+376\theta+103\right)-2^{14} x^{3}\left(369\theta^4+1638\theta^3+2992\theta^2+2481\theta+819\right)+2^{19} x^{4}\left(667\theta^4+2870\theta^3+6158\theta^2+6571\theta+2559\right)-2^{24} x^{5}\left(1263\theta^4+3066\theta^3+2692\theta^2+4295\theta+2110\right)+2^{29} 3 x^{6}\left(787\theta^4+1842\theta^3-1598\theta^2-3339\theta-1652\right)-2^{34} x^{7}\left(3087\theta^4+9750\theta^3+2942\theta^2-13117\theta-9816\right)+2^{39} x^{8}\left(3227\theta^4+6254\theta^3+14286\theta^2+4793\theta-1948\right)-2^{44} x^{9}\left(3906\theta^4+1440\theta^3+5279\theta^2+7593\theta+3747\right)+2^{49} x^{10}\left(3896\theta^4+6208\theta^3+3391\theta^2+725\theta+525\right)-2^{54} 5 x^{11}\left(408\theta^4+1536\theta^3+2230\theta^2+1460\theta+361\right)+2^{59} 5^{2} x^{12}\left((2\theta+3)^4\right)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 2704, 179968, 14147856, ...
--> OEIS
Normalized instanton numbers (n0=1): 48, 46, 3184, 409910, -3351792, ... ; Common denominator:...

Discriminant

\((16z-1)(32z-1)(4096z^2-192z+1)(64z-1)^2(163840z^3+1024z^2+32z-1)^2\)

Local exponents

≈\(-0.009802-0.019I\) ≈\(-0.009802+0.019I\)\(0\)\(\frac{ 3}{ 128}-\frac{ 1}{ 128}\sqrt{ 5}\) ≈\(0.013353\)\(\frac{ 1}{ 64}\)\(\frac{ 1}{ 32}\)\(\frac{ 3}{ 128}+\frac{ 1}{ 128}\sqrt{ 5}\)\(\frac{ 1}{ 16}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 3}{ 2}\)
\(1\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(\frac{ 3}{ 2}\)
\(3\)\(3\)\(0\)\(1\)\(3\)\(1\)\(1\)\(1\)\(1\)\(\frac{ 3}{ 2}\)
\(4\)\(4\)\(0\)\(2\)\(4\)\(1\)\(2\)\(2\)\(2\)\(\frac{ 3}{ 2}\)

Note:

This is operator "12.12" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

14

New Number: 14.1 |  AESZ:  |  Superseeker: 0 0  |  Hash: a8cf56492aecc07971e82c9104785180  

Degree: 14

\(\theta^4-x\left(13\theta^4+14\theta^3+16\theta^2+9\theta+2\right)+x^{2}\left(33\theta^4-88\theta^3-265\theta^2-324\theta-148\right)+x^{3}\left(217\theta^4+2362\theta^3+6403\theta^2+8178\theta+4160\right)-2 x^{4}\left(677\theta^4+4134\theta^3+8089\theta^2+6210\theta+360\right)+2^{2} 3 x^{5}\left(151\theta^4-1266\theta^3-11610\theta^2-28955\theta-25110\right)+2^{2} x^{6}\left(1895\theta^4+37302\theta^3+176991\theta^2+355848\theta+268836\right)-2^{2} x^{7}\left(9635\theta^4+89170\theta^3+185885\theta^2-107394\theta-522464\right)+2^{3} x^{8}\left(5907\theta^4-10636\theta^3-416125\theta^2-1666326\theta-2051920\right)+2^{5} x^{9}\left(2947\theta^4+80284\theta^3+519934\theta^2+1328475\theta+1205150\right)-2^{6} x^{10}\left(6122\theta^4+84852\theta^3+397555\theta^2+722745\theta+356430\right)+2^{6} 3 x^{11}\left(2259\theta^4+13398\theta^3-46549\theta^2-456244\theta-796656\right)+2^{7} 3^{2} x^{12}(\theta+4)(371\theta^3+8580\theta^2+53325\theta+101564)-2^{10} 3^{3} x^{13}(\theta+4)(\theta+5)(51\theta^2+519\theta+1330)+2^{11} 3^{4} 5 x^{14}(\theta+4)(\theta+5)^2(\theta+6)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 2, 16, 48, 264, ...
--> OEIS
Normalized instanton numbers (n0=1): 0, 1/4, 0, -1/2, 0, ... ; Common denominator:...

Discriminant

\((z-1)(6z-1)(4z-1)(3z+1)(4z+1)(5z-1)(2z+1)^2(2z-1)^2(6z^2-2z+1)^2\)

Local exponents

\(-\frac{ 1}{ 2}\)\(-\frac{ 1}{ 3}\)\(-\frac{ 1}{ 4}\)\(0\)\(\frac{ 1}{ 6}-\frac{ 1}{ 6}\sqrt{ 5}I\)\(\frac{ 1}{ 6}\)\(\frac{ 1}{ 6}+\frac{ 1}{ 6}\sqrt{ 5}I\)\(\frac{ 1}{ 5}\)\(\frac{ 1}{ 4}\)\(\frac{ 1}{ 2}\)\(1\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(4\)
\(0\)\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(1\)\(1\)\(0\)\(1\)\(5\)
\(-1\)\(1\)\(1\)\(0\)\(3\)\(1\)\(3\)\(1\)\(1\)\(-1\)\(1\)\(5\)
\(1\)\(2\)\(2\)\(0\)\(4\)\(2\)\(4\)\(2\)\(2\)\(1\)\(2\)\(6\)

Note:

This is operator "14.1" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

15

New Number: 1.6 |  AESZ: 6  |  Superseeker: 160 1956896  |  Hash: 483b4ca5270ed3bfca9243827b62064e  

Degree: 1

\(\theta^4-2^{4} x(4\theta+1)(2\theta+1)^2(4\theta+3)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 48, 15120, 7392000, 4414410000, ...
--> OEIS
Normalized instanton numbers (n0=1): 160, 11536, 1956896, 485487816, 148865410272, ... ; Common denominator:...

Discriminant

\(\)

No data for singularities

Note:

A-incarnation of $X(2,4)$ in $P^5$.

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex