Summary

You searched for: sol=-2/3

Your search produced 2 matches

You can download all data as plain text or as JSON

1

New Number: 6.24 |  AESZ:  |  Superseeker: 1/3 5/3  |  Hash: aebe18b25bf886c4483ce54370c0fcbe  

Degree: 6

\(3^{6} \theta^4+3^{5} x\left(7\theta^2+7\theta+2\right)-3^{4} x^{2}\left(1095\theta^4+4380\theta^3+7227\theta^2+5694\theta+1760\right)-2 3^{3} x^{3}(\theta+2)(\theta+1)(4165\theta^2+12495\theta+11148)+2^{2} 3^{2} x^{4}(47961\theta^2+191844\theta+148643)(\theta+2)^2+2^{3} 3^{2} 5 7 17 73 x^{5}(\theta+1)(\theta+2)(\theta+3)(\theta+4)-2^{5} 5^{2} 7^{2} 17^{2} x^{6}(\theta+5)(\theta+4)(\theta+2)(\theta+1)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, -2/3, 112/9, -8/27, 29500/81, ...
--> OEIS
Normalized instanton numbers (n0=1): 1/3, 5/6, 5/3, 19/3, 29, ... ; Common denominator:...

Discriminant

\(-(7z-3)(34z-3)(17z+3)(20z+3)(10z-3)(14z+3)\)

Local exponents

\(-\frac{ 3}{ 14}\)\(-\frac{ 3}{ 17}\)\(-\frac{ 3}{ 20}\)\(0\)\(\frac{ 3}{ 34}\)\(\frac{ 3}{ 10}\)\(\frac{ 3}{ 7}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(1\)
\(1\)\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(2\)
\(1\)\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(4\)
\(2\)\(2\)\(2\)\(0\)\(2\)\(2\)\(2\)\(5\)

Note:

This is operator "6.24" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

2

New Number: 16.5 |  AESZ:  |  Superseeker: 2/3 -3557/81  |  Hash: b0d936e56acdf03e3e72e1814442ab50  

Degree: 16

\(3^{2} \theta^4+3 x\left(251\theta^4+70\theta^3+54\theta^2+19\theta+2\right)-x^{2}\left(9925\theta^2+13690\theta-2428\theta^3-28363\theta^4+6024\right)+2^{4} x^{3}\left(37199\theta^4-22299\theta^3-73056\theta^2-78543\theta-30497\right)+2^{4} x^{4}\left(412981\theta^4-1074238\theta^3-2419908\theta^2-2290027\theta-697466\right)+2^{6} x^{5}\left(191993\theta^4-5944270\theta^3-10717950\theta^2-7362757\theta-327010\right)-2^{6} x^{6}\left(10616485\theta^4+72432336\theta^3+96362271\theta^2+3620736\theta-59039988\right)-2^{10} x^{7}\left(8460644\theta^4+24423487\theta^3-9938722\theta^2-101499459\theta-93359835\right)-2^{11} x^{8}\left(12789638\theta^4-61790956\theta^3-472388549\theta^2-910406750\theta-561795471\right)+2^{14} x^{9}\left(17249008\theta^4+194008320\theta^3+675401042\theta^2+875629503\theta+302767578\right)+2^{14} 3^{2} x^{10}\left(17651552\theta^4+131260160\theta^3+303001104\theta^2+57460728\theta-358842021\right)+2^{19} 3 x^{11}\left(3093152\theta^4+7407728\theta^3-96718084\theta^2-479745438\theta-596879613\right)-2^{20} 3^{2} x^{12}\left(2426592\theta^4+35398464\theta^3+214634048\theta^2+589589832\theta+596784069\right)-2^{26} 3^{2} x^{13}\left(166976\theta^4+1827328\theta^3+8848858\theta^2+21296171\theta+20263707\right)-2^{26} 3^{3} x^{14}\left(11312\theta^4-272128\theta^3-2642848\theta^2-7506168\theta-6935571\right)+2^{31} 3^{4} x^{15}\left(2240\theta^4+35304\theta^3+198316\theta^2+480714\theta+429057\right)+2^{32} 3^{8} x^{16}\left((2\theta+7)^4\right)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, -2/3, 142/3, -7312/27, 314042/81, ...
--> OEIS
Normalized instanton numbers (n0=1): 2/3, 76/9, -3557/81, -5159/486, 1429691/729, ... ; Common denominator:...

Discriminant

\(\)

No data for singularities

Note:

This is operator "16.5" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex