Summary

You searched for: inst=29

Your search produced 2 matches

You can download all data as plain text or as JSON

1

New Number: 6.24 |  AESZ:  |  Superseeker: 1/3 5/3  |  Hash: aebe18b25bf886c4483ce54370c0fcbe  

Degree: 6

\(3^{6} \theta^4+3^{5} x\left(7\theta^2+7\theta+2\right)-3^{4} x^{2}\left(1095\theta^4+4380\theta^3+7227\theta^2+5694\theta+1760\right)-2 3^{3} x^{3}(\theta+2)(\theta+1)(4165\theta^2+12495\theta+11148)+2^{2} 3^{2} x^{4}(47961\theta^2+191844\theta+148643)(\theta+2)^2+2^{3} 3^{2} 5 7 17 73 x^{5}(\theta+1)(\theta+2)(\theta+3)(\theta+4)-2^{5} 5^{2} 7^{2} 17^{2} x^{6}(\theta+5)(\theta+4)(\theta+2)(\theta+1)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, -2/3, 112/9, -8/27, 29500/81, ...
--> OEIS
Normalized instanton numbers (n0=1): 1/3, 5/6, 5/3, 19/3, 29, ... ; Common denominator:...

Discriminant

\(-(7z-3)(34z-3)(17z+3)(20z+3)(10z-3)(14z+3)\)

Local exponents

\(-\frac{ 3}{ 14}\)\(-\frac{ 3}{ 17}\)\(-\frac{ 3}{ 20}\)\(0\)\(\frac{ 3}{ 34}\)\(\frac{ 3}{ 10}\)\(\frac{ 3}{ 7}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(1\)
\(1\)\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(2\)
\(1\)\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(4\)
\(2\)\(2\)\(2\)\(0\)\(2\)\(2\)\(2\)\(5\)

Note:

This is operator "6.24" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

2

New Number: 7.6 |  AESZ:  |  Superseeker: 1/3 5/3  |  Hash: 24ba77c97bc4b46c39a41c77cc1d1ef4  

Degree: 7

\(3^{2} \theta^4-3 x\left(112\theta^4+140\theta^3+133\theta^2+63\theta+12\right)+x^{2}\left(4393\theta^4+9340\theta^3+10903\theta^2+6360\theta+1488\right)-2 x^{3}\left(11669\theta^4+27720\theta^3+27019\theta^2+8460\theta-912\right)+2^{2} x^{4}\left(6799\theta^4-10288\theta^3-82183\theta^2-119168\theta-52672\right)+2^{3} 7 x^{5}(\theta+1)(2611\theta^3+15537\theta^2+26998\theta+14360)-2^{6} 7^{2} x^{6}(\theta+1)(\theta+2)(83\theta^2+105\theta-66)-2^{10} 7^{3} x^{7}(\theta+1)(\theta+2)^2(\theta+3)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 4, 28, 232, 2188, ...
--> OEIS
Normalized instanton numbers (n0=1): 1/3, 5/6, 5/3, 19/3, 29, ... ; Common denominator:...

Discriminant

\(-(2z+1)(8z-1)(7z-1)(16z-1)(z+1)(-3+14z)^2\)

Local exponents

\(-1\)\(-\frac{ 1}{ 2}\)\(0\)\(\frac{ 1}{ 16}\)\(\frac{ 1}{ 8}\)\(\frac{ 1}{ 7}\)\(\frac{ 3}{ 14}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(1\)
\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(1\)\(2\)
\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(3\)\(2\)
\(2\)\(2\)\(0\)\(2\)\(2\)\(2\)\(4\)\(3\)

Note:

This is operator "7.6" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex