New Number: 2.30 | AESZ: 143 | Superseeker: -1008 -607849200 | Hash: e9217db4c6dcfdb9588bab85e6a5f136
Degree: 2
\(\theta^4-2^{2} 3^{2} x(6\theta+1)(6\theta+5)(18\theta^2+18\theta+7)+2^{4} 3^{8} x^{2}(6\theta+1)(6\theta+5)(6\theta+7)(6\theta+11)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 1260, 6860700, 49707337680, 409490086185180, ... --> OEIS Normalized instanton numbers (n0=1): -1008, 499086, -607849200, 1097705372526, -2467344815777520, ... ; Common denominator:...
Discriminant
\((11664z-1)^2\)
Local exponents
Note:
$D\ast h^{\tilde{\;}}B\ast\kappa$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -1008, 3991680, -16411929408, 70253147833344, -308418101972191008, 1377245221782048622080, -6225587175728443187064960,...
Coefficients of the q-coordinate : 0, 1, -7272, 44808876, -257021805504, 1418320989480654, -7639620700501571040, 40475200668312889290168,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 1}{ 16}-126\lambda\) | \(\frac{ 5}{ 32}-63\lambda\) | \(-\frac{ 45}{ 128}-\frac{ 189}{ 4}\lambda\) | \(-.26620727e-1\) |
\(-\frac{ 9}{ 8}\) | \(\frac{ 7}{ 16}\) | \(-\frac{ 27}{ 64}\) | \(-\frac{ 45}{ 128}+\frac{ 189}{ 4}\lambda\) |
\(-\frac{ 3}{ 2}\) | \(\frac{ 1}{ 4}\) | \(\frac{ 7}{ 16}\) | \(\frac{ 5}{ 32}+63\lambda\) |
\(-3\) | \(-\frac{ 3}{ 2}\) | \(-\frac{ 9}{ 8}\) | \(\frac{ 1}{ 16}+126\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(\frac{ 15}{ 16}+126\lambda\) | \(-\frac{ 7}{ 8}\) | \(\frac{ 1}{ 2}\) | \(1\) |
\(\frac{ 9}{ 8}\) | \(0\) | \(-1\) | \(0\) |
\(\frac{ 3}{ 2}\) | \(-3\) | \(0\) | \(0\) |
\(3\) | \(0\) | \(0\) | \(0\) |
copy data