Summary

You searched for: sol=675600

Your search produced exactly one match

1

New Number: 5.83 |  AESZ: 316  |  Superseeker: 852/11 1678156/11  |  Hash: b8201d587a016cc013e2477aadb5c1ff  

Degree: 5

\(11^{2} \theta^4-2^{2} 3 11 x\left(364\theta^4+824\theta^3+599\theta^2+187\theta+22\right)-2^{5} x^{2}\left(62164\theta^4+84496\theta^3+12499\theta^2-6402\theta-1584\right)-2^{4} 3 x^{3}\left(484016\theta^4+474144\theta^3+366952\theta^2+161832\theta+27027\right)-2^{11} 3^{2} x^{4}(964\theta^2+1360\theta+669)(2\theta+1)^2-2^{16} 3^{4} x^{5}(2\theta+1)^2(2\theta+3)^2\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 24, 3240, 675600, 171901800, ...
--> OEIS
Normalized instanton numbers (n0=1): 852/11, 21572/11, 1678156/11, 15912512, 22956446184/11, ... ; Common denominator:...

Discriminant

\(-(2304z^3+1664z^2+432z-1)(11+192z)^2\)

Local exponents

≈\(-0.362258-0.240689I\) ≈\(-0.362258+0.240689I\)\(-\frac{ 11}{ 192}\)\(0\) ≈\(0.002294\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 2}\)
\(1\)\(1\)\(1\)\(0\)\(1\)\(\frac{ 1}{ 2}\)
\(1\)\(1\)\(3\)\(0\)\(1\)\(\frac{ 3}{ 2}\)
\(2\)\(2\)\(4\)\(0\)\(2\)\(\frac{ 3}{ 2}\)

Note:

This is operator "5.83" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex