1
New Number: 6.41 | AESZ: | Superseeker: 161/13 26946/13 | Hash: a18253e410f284ecdac465808ec8a6e1
Degree: 6
\(13^{6} \theta^4-13^{5} x\left(1382\theta^4+2764\theta^3+2109\theta^2+727\theta+96\right)-13^{4} x^{2}\left(104743\theta^4+418972\theta^3+637899\theta^2+437854\theta+116928\right)-2^{2} 13^{3} x^{3}\left(746084\theta^4+4476504\theta^3+9750459\theta^2+9107109\theta+3146850\right)-2^{5} 7 13^{2} x^{4}\left(180214\theta^4+1441712\theta^3+4063657\theta^2+4720932\theta+1930533\right)-2^{9} 3 5 7^{2} 13 x^{5}(\theta+4)(\theta+1)(688\theta^2+3440\theta+3823)-2^{13} 3^{2} 5^{2} 7^{3} x^{6}(\theta+5)(\theta+4)(\theta+2)(\theta+1)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 96/13, 49776/169, 35502696/2197, 30531314880/28561, ... --> OEIS Normalized instanton numbers (n0=1): 161/13, 1406/13, 26946/13, 742982/13, 25168759/13, ... ; Common denominator:...
\(-(-169+18720z+22400z^2)(8z+13)^2(21z+13)^2\)
\(-\frac{ 13}{ 8}\) | \(-\frac{ 117}{ 280}-\frac{ 169}{ 560}\sqrt{ 2}\) | \(-\frac{ 13}{ 21}\) | \(0\) | \(-\frac{ 117}{ 280}+\frac{ 169}{ 560}\sqrt{ 2}\) | \(\infty\) |
---|---|---|---|---|---|
\(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(1\) |
\(0\) | \(1\) | \(0\) | \(0\) | \(1\) | \(2\) |
\(1\) | \(1\) | \(1\) | \(0\) | \(1\) | \(4\) |
\(1\) | \(2\) | \(1\) | \(0\) | \(2\) | \(5\) |