1
New Number: 8.55 | AESZ: | Superseeker: 1 68/9 | Hash: 39ed8ce7572bc79a333f77c892033bcf
Degree: 8
\(\theta^4-x\left(33\theta^4+98\theta^3+105\theta^2+56\theta+12\right)+2^{3} x^{2}\left(34\theta^4+276\theta^3+609\theta^2+582\theta+216\right)+2^{4} 3 x^{3}\left(11\theta^4-170\theta^3-941\theta^2-1520\theta-846\right)-2^{7} 3^{2} x^{4}(2\theta^2+6\theta+5)(4\theta^2+12\theta-31)+2^{8} 3 x^{5}\left(11\theta^4+302\theta^3+1183\theta^2+1652\theta+726\right)+2^{11} x^{6}\left(34\theta^4+132\theta^3-39\theta^2-708\theta-747\right)-2^{12} x^{7}\left(33\theta^4+298\theta^3+1005\theta^2+1492\theta+816\right)+2^{16} x^{8}\left((\theta+3)^4\right)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 12, 120, 1216, 13080, ... --> OEIS Normalized instanton numbers (n0=1): 1, -2, 68/9, -30, 150, ... ; Common denominator:...
\((z-1)(16z-1)(16z^2-16z+1)(4z-1)^2(4z+1)^2\)
\(-\frac{ 1}{ 4}\) | \(0\) | \(\frac{ 1}{ 16}\) | \(\frac{ 1}{ 2}-\frac{ 1}{ 4}\sqrt{ 3}\) | \(\frac{ 1}{ 4}\) | \(\frac{ 1}{ 2}+\frac{ 1}{ 4}\sqrt{ 3}\) | \(1\) | \(\infty\) |
---|---|---|---|---|---|---|---|
\(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(3\) |
\(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | \(1\) | \(3\) |
\(3\) | \(0\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(3\) |
\(4\) | \(0\) | \(2\) | \(2\) | \(1\) | \(2\) | \(2\) | \(3\) |