Summary

You searched for: inst=33/17

Your search produced 2 matches

You can download all data as plain text or as JSON

1

New Number: 6.27 |  AESZ:  |  Superseeker: 6/17 33/17  |  Hash: af5aea32756746d4fc4931e4da73756b  

Degree: 6

\(17^{6} \theta^4-17^{5} x\left(427\theta^4+854\theta^3+814\theta^2+387\theta+74\right)+17^{4} x^{2}\left(47239\theta^4+188956\theta^3+300763\theta^2+223614\theta+64536\right)-2 3 17^{3} x^{3}\left(237751\theta^4+1426506\theta^3+3169919\theta^2+3090480\theta+1104868\right)-2^{2} 3^{2} 17^{2} x^{4}\left(1549605\theta^4+12396840\theta^3+35038211\theta^2+40978124\theta+16802716\right)+2^{3} 3^{3} 7 17 139 x^{5}(\theta+4)(\theta+1)(3737\theta^2+18685\theta+21310)-2^{5} 3^{4} 7^{2} 139^{2} x^{6}(\theta+5)(\theta+4)(\theta+2)(\theta+1)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 74/17, 7788/289, 1036400/4913, 164905648/83521, ...
--> OEIS
Normalized instanton numbers (n0=1): 6/17, 25/34, 33/17, 157/17, 577/17, ... ; Common denominator:...

Discriminant

\(-(28z+17)(278z-17)(8757z^2-2805z+289)(6z-17)^2\)

Local exponents

\(-\frac{ 17}{ 28}\)\(0\)\(\frac{ 17}{ 278}\)\(\frac{ 935}{ 5838}-\frac{ 289}{ 5838}\sqrt{ 3}I\)\(\frac{ 935}{ 5838}+\frac{ 289}{ 5838}\sqrt{ 3}I\)\(\frac{ 17}{ 6}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(1\)
\(1\)\(0\)\(1\)\(1\)\(1\)\(\frac{ 1}{ 2}\)\(2\)
\(1\)\(0\)\(1\)\(1\)\(1\)\(\frac{ 1}{ 2}\)\(4\)
\(2\)\(0\)\(2\)\(2\)\(2\)\(1\)\(5\)

Note:

This is operator "6.27" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex  

2

New Number: 8.68 |  AESZ:  |  Superseeker: 6/17 33/17  |  Hash: 0c0662f5b46ac6cb0bd298a63cf364c7  

Degree: 8

\(17^{2} \theta^4+17 x\theta(165\theta^3-114\theta^2-74\theta-17)-x^{2}\left(20619\theta^4+122880\theta^3+175353\theta^2+126480\theta+36992\right)-2 x^{3}\left(201857\theta^4+853944\theta^3+1437673\theta^2+1174122\theta+375972\right)-2^{2} x^{4}\left(571275\theta^4+2711616\theta^3+5301571\theta^2+4856674\theta+1694372\right)-2^{3} 3 x^{5}(\theta+1)(295815\theta^3+1523993\theta^2+2924668\theta+1983212)-2^{5} x^{6}(\theta+1)(\theta+2)(558823\theta^2+2951265\theta+4136951)-2^{7} 3 37 x^{7}(\theta+3)(\theta+2)(\theta+1)(2797\theta+9878)-2^{9} 3^{2} 7 37^{2} x^{8}(\theta+1)(\theta+2)(\theta+3)(\theta+4)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, 0, 8, 24, 288, ...
--> OEIS
Normalized instanton numbers (n0=1): 6/17, 25/34, 33/17, 157/17, 577/17, ... ; Common denominator:...

Discriminant

\(-(12z-1)(6z+1)(7z^2-z+1)(4z+1)^2(74z+17)^2\)

Local exponents

\(-\frac{ 1}{ 4}\)\(-\frac{ 17}{ 74}\)\(-\frac{ 1}{ 6}\)\(0\)\(\frac{ 1}{ 14}-\frac{ 3}{ 14}\sqrt{ 3}I\)\(\frac{ 1}{ 14}+\frac{ 3}{ 14}\sqrt{ 3}I\)\(\frac{ 1}{ 12}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(1\)
\(\frac{ 1}{ 2}\)\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(2\)
\(\frac{ 1}{ 2}\)\(3\)\(1\)\(0\)\(1\)\(1\)\(1\)\(3\)
\(1\)\(4\)\(2\)\(0\)\(2\)\(2\)\(2\)\(4\)

Note:

This is operator "8.68" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex