### Summary

You searched for: superseeker=-13/5,-6729/5

Your search produced exactly one match

1

New Number: 5.28 |  AESZ: 203  |  Superseeker: -13/5 -6729/5  |  Hash: dfab012366b4bc6f7af83dc79f28b802

Degree: 5

$5^{2} \theta^4+5 x\theta(499\theta^3+86\theta^2+53\theta+10)+2^{4} x^{2}\left(1649\theta^4-13183\theta^3-19776\theta^2-11020\theta-2200\right)-2^{6} x^{3}\left(39521\theta^4+162000\theta^3+142095\theta^2+51540\theta+6540\right)-2^{11} 19 x^{4}\left(1370\theta^4+2860\theta^3+2449\theta^2+1019\theta+174\right)-2^{16} 19^{2} x^{5}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 0, 88, -1728, 99576, ...
--> OEIS
Normalized instanton numbers (n0=1): -13/5, 427/5, -6729/5, 173044/5, -952275, ... ; Common denominator:...

#### Discriminant

$-(32z-1)(32z^2+71z+1)(5+152z)^2$

#### Local exponents

$-\frac{ 71}{ 64}-\frac{ 17}{ 64}\sqrt{ 17}$$-\frac{ 5}{ 152}$$-\frac{ 71}{ 64}+\frac{ 17}{ 64}\sqrt{ 17}$$0$$\frac{ 1}{ 32}$$\infty$
$0$$0$$0$$0$$0$$1$
$1$$1$$1$$0$$1$$1$
$1$$3$$1$$0$$1$$1$
$2$$4$$2$$0$$2$$1$

#### Note:

There is a second MUM-point at infinity, corresponding to Operator AESZ 202 /5.27

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex