### Summary

You searched for: sol=-14

Your search produced exactly one match

1

New Number: 10.4 |  AESZ:  |  Superseeker: 10 7709/9  |  Hash: 6162ae56594cb4ca6830174a8ed00300

Degree: 10

$\theta^4+x\left(14+63\theta+102\theta^2+78\theta^3+231\theta^4\right)+x^{2}\left(2832+13390\theta+24563\theta^2+19308\theta^3+21987\theta^4\right)+2^{3} x^{3}\left(140700\theta^4+225708\theta^3+290537\theta^2+177465\theta+44084\right)+2^{4} 3 x^{4}\left(713295\theta^4+1769710\theta^3+2523886\theta^2+1767335\theta+499986\right)+2^{6} x^{5}\left(10296675\theta^4+36211314\theta^3+60921650\theta^2+49433683\theta+15811528\right)+2^{6} x^{6}\left(137088291\theta^4+659829216\theta^3+1356977569\theta^2+1291863456\theta+467669756\right)+2^{9} x^{7}\left(179375706\theta^4+1143044916\theta^3+2845532295\theta^2+3114799053\theta+1242790862\right)+2^{12} x^{8}\left(184827267\theta^4+1416425484\theta^3+3980381306\theta^2+4736268700\theta+1991273435\right)+2^{16} 47 x^{9}(2\theta+3)(622034\theta^3+4130865\theta^2+8390461\theta+4891218)+2^{20} 3 17^{2} 47^{2} x^{10}(\theta+1)(2\theta+5)(2\theta+3)(\theta+3)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -14, 250, -5192, 116266, ...
--> OEIS
Normalized instanton numbers (n0=1): 10, -149/2, 7709/9, -27333/2, 242829, ... ; Common denominator:...

#### Discriminant

$(24z+1)(2312z^3+75z^2+15z+1)(32z+1)^2(376z^2+64z+1)^2$

#### Local exponents

$-\frac{ 4}{ 47}-\frac{ 9}{ 188}\sqrt{ 2}$ ≈$-0.055617$$-\frac{ 1}{ 24}$$-\frac{ 1}{ 32}$$-\frac{ 4}{ 47}+\frac{ 9}{ 188}\sqrt{ 2}$$0$ ≈$0.011589-0.087422I$ ≈$0.011589+0.087422I$$\infty$
$0$$0$$0$$0$$0$$0$$0$$0$$1$
$1$$1$$1$$\frac{ 1}{ 2}$$1$$0$$1$$1$$\frac{ 3}{ 2}$
$3$$1$$1$$\frac{ 1}{ 2}$$3$$0$$1$$1$$\frac{ 5}{ 2}$
$4$$2$$2$$1$$4$$0$$2$$2$$3$

#### Note:

This is operator "10.4" from ...