New Number: 2.62 | AESZ: 28 | Superseeker: 5 312 | Hash: 06dd455cafc5097e4f671d385984c1a2
Degree: 2
\(\theta^4-x\left(65\theta^4+130\theta^3+105\theta^2+40\theta+6\right)+2^{2} x^{2}(4\theta+3)(\theta+1)^2(4\theta+5)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 6, 126, 3948, 149310, ... --> OEIS Normalized instanton numbers (n0=1): 5, 28, 312, 4808, 91048, ... ; Common denominator:...
Discriminant
\((64z-1)(z-1)\)
Local exponents
Note:
A-incarnation: $X(1, 1, 1, 1, 1, 1) \subset Grass(3, 6)$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, 5, 229, 8429, 307941, 11381005, 424644781, 15963252737,...
Coefficients of the q-coordinate : 0, 1, -16, 64, -552, -5632, -165472, -4342772,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
Characteristic classes:
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1+96\lambda\) | \(0\) | \(8\lambda\) | \(.5153046e-2\) |
\(\frac{ 7}{ 2}\) | \(1\) | \(\frac{ 7}{ 24}\) | \(-8\lambda\) |
\(0\) | \(0\) | \(1\) | \(0\) |
\(42\) | \(0\) | \(\frac{ 7}{ 2}\) | \(1-96\lambda\) |
copy data \(16.+8.373926794I\) | \(-5-576\lambda\) | \(\frac{ 5}{ 4}+144\lambda\) | \(-.204864220-.332298682I\) |
\(63\) | \(-20\) | \(\frac{ 21}{ 4}\) | \(-\frac{ 5}{ 4}-144\lambda\) |
\(252\) | \(-84\) | \(22\) | \(-5-576\lambda\) |
\(756+\frac{ 1}{ 500000000}I\) | \(-252\) | \(63\) | \(-14.-8.373926794I\) |
copy data Basis of the Doran-Morgan lattice
\(-96\lambda\) | \(\frac{ 21}{ 2}\) | \(1\) | \(1\) |
\(-\frac{ 7}{ 2}\) | \(-21\) | \(-1\) | \(0\) |
\(0\) | \(42\) | \(0\) | \(0\) |
\(-42\) | \(0\) | \(0\) | \(0\) |
copy data