New Number: 2.58 | AESZ: 46 | Superseeker: -6 -104 | Hash: 2226ec115674e71c483ba2c0350e8adf
Degree: 2
\(\theta^4-2 3 x(2\theta+1)^2(9\theta^2+9\theta+5)+2^{2} 3^{6} x^{2}(2\theta+1)(\theta+1)^2(2\theta+3)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 30, 1782, 129900, 10463670, ... --> OEIS Normalized instanton numbers (n0=1): -6, -6, -104, 36, -4812, ... ; Common denominator:...
Discriminant
\((108z-1)^2\)
Local exponents
Note:
Hadamard product $I \ast \iota$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -6, -54, -2814, 2250, -601506, 8201682, -152600706,...
Coefficients of the q-coordinate : 0, 1, -54, 2079, -67356, 1981287, -54730890, 1447035885,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 1}{ 2}+36\lambda\) | \(\frac{ 1}{ 4}+6\lambda\) | \(0\) | \(.19987912e-1\) |
\(0\) | \(1\) | \(0\) | \(0\) |
\(-6\) | \(3\) | \(1\) | \(\frac{ 1}{ 4}-6\lambda\) |
\(-36\) | \(-6\) | \(0\) | \(\frac{ 1}{ 2}-36\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(\frac{ 1}{ 2}-36\lambda\) | \(-3\) | \(\frac{ 5}{ 6}\) | \(1\) |
\(0\) | \(12\) | \(-1\) | \(0\) |
\(6\) | \(-36\) | \(0\) | \(0\) |
\(36\) | \(0\) | \(0\) | \(0\) |
copy data