New Number: 2.52 | AESZ: 16 | Superseeker: 4 644/3 | Hash: 05af0662662bfbec63e3186c4f363313
Degree: 2
\(\theta^4-2^{2} x(2\theta+1)^2(5\theta^2+5\theta+2)+2^{8} x^{2}(2\theta+1)(\theta+1)^2(2\theta+3)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 8, 168, 5120, 190120, ... --> OEIS Normalized instanton numbers (n0=1): 4, 20, 644/3, 3072, 52512, ... ; Common denominator:...
Discriminant
\((64z-1)(16z-1)\)
Local exponents
Note:
Hadamard product $I \ast \alpha$
A-Incarnation: diagonal subfamily of 1,1,1,1-intersection in $P^1 \times P^1 \times P^1 \times \P^1$
B-Incarnations:
Fibre products: 62211- x 632--1, S62211
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, 4, 164, 5800, 196772, 6564004, 222025448, 7574684408,...
Coefficients of the q-coordinate : 0, 1, -20, 222, -2704, 21293, -307224, 80402,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
Characteristic classes:
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1.+.620290874I\) | \(0\) | \(\frac{ 32}{ 3}\lambda\) | \(.8015849e-2\) |
\(4\) | \(1\) | \(\frac{ 1}{ 3}\) | \(-\frac{ 32}{ 3}\lambda\) |
\(0\) | \(0\) | \(1\) | \(0\) |
\(48\) | \(0\) | \(4\) | \(1.-.620290874I\) |
copy data \(5+512\lambda\) | \(-1.-.620290874I\) | \(\frac{ 1}{ 3}+\frac{ 128}{ 3}\lambda\) | \(-\frac{ 1}{ 7}7^{ \frac{ 5}{ 8})exp(-\frac{ 9}{ 4}}Zeta(5)^(\frac{ 1}{ 4})-\frac{ 64}{ 3}\lambda\) |
\(16\) | \(-3\) | \(\frac{ 4}{ 3}\) | \(-\frac{ 1}{ 3}-\frac{ 128}{ 3}\lambda\) |
\(48\) | \(-12\) | \(5\) | \(-1.-.620290874I\) |
\(192\) | \(-48\) | \(16\) | \(-3-512\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(-\frac{ 310145437}{ 500000000}I\) | \(12\) | \(1\) | \(1\) |
\(-4\) | \(-24\) | \(-1\) | \(0\) |
\(0\) | \(48\) | \(0\) | \(0\) |
\(-48\) | \(0\) | \(0\) | \(0\) |
copy data