New Number: 2.61 | AESZ: 26 | Superseeker: 10 1724 | Hash: f3fc09474973b19b8bdb783e3322eb65
Degree: 2
\(\theta^4-2 x(2\theta+1)^2(13\theta^2+13\theta+4)-2^{2} 3 x^{2}(2\theta+1)(3\theta+2)(3\theta+4)(2\theta+3)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 8, 288, 15200, 968800, ... --> OEIS Normalized instanton numbers (n0=1): 10, 191/2, 1724, 45680, 1478214, ... ; Common denominator:...
Discriminant
\(-(4z+1)(108z-1)\)
Local exponents
Note:
A-incarnation: $X(1,1,1,1,2) \subset Grass(2,6)$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, 10, 774, 46558, 2924294, 184776760, 11815272594, 761379437052,...
Coefficients of the q-coordinate : 0, 1, -26, 121, -1372, -68612, -2386858, -114302870,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
Characteristic classes:
Monodromy (with respect to Frobenius basis)
\(\frac{ 20}{ 3}+464\lambda\) | \(-\frac{ 17}{ 6}-232\lambda\) | \(1.0456349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349+.414911827I\) | \(-.241563519-.227532292I\) |
\(\frac{ 62}{ 3}\) | \(-\frac{ 28}{ 3}\) | \(\frac{ 961}{ 252}\) | \(-1.0456349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349-.414911827I\) |
\(56\) | \(-28\) | \(\frac{ 34}{ 3}\) | \(-\frac{ 17}{ 6}-232\lambda\) |
\(112\) | \(-56\) | \(\frac{ 62}{ 3}\) | \(-\frac{ 14}{ 3}-464\lambda\) |
copy data \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1+116\lambda\) | \(0\) | \(.63575199e-1I\) | \(\frac{ 79}{ 7000}\) |
\(\frac{ 19}{ 6}\) | \(1\) | \(\frac{ 361}{ 1008}\) | \(-.63575199e-1I\) |
\(0\) | \(0\) | \(1\) | \(0\) |
\(28\) | \(0\) | \(\frac{ 19}{ 6}\) | \(1-116\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(-116\lambda\) | \(\frac{ 47}{ 6}\) | \(1\) | \(1\) |
\(-\frac{ 19}{ 6}\) | \(-14\) | \(-1\) | \(0\) |
\(0\) | \(28\) | \(0\) | \(0\) |
\(-28\) | \(0\) | \(0\) | \(0\) |
copy data