New Number: 2.53 | AESZ: 29 | Superseeker: 14 10424/3 | Hash: 92e8a038051b3fb8e0cc6ad6a52b8bfb
Degree: 2
\(\theta^4-2 x(2\theta+1)^2(17\theta^2+17\theta+5)+2^{2} x^{2}(2\theta+1)(\theta+1)^2(2\theta+3)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 10, 438, 28900, 2310070, ... --> OEIS Normalized instanton numbers (n0=1): 14, 303/2, 10424/3, 113664, 4579068, ... ; Common denominator:...
Discriminant
\(1-136z+16z^2\)
Local exponents
Note:
Hadamard product $I \ast \gamma$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, 14, 1226, 93830, 7275722, 572383514, 45521513426, 3649815392986,...
Coefficients of the q-coordinate : 0, 1, -34, 303, -5396, -122185, -7247646, -411600019,...
| Gopakumar-Vafa invariants |
---|
g=0 | 336, 3636, 83392, 2727936, 109897632, 5057935376, 255380668896, 13802556520272,... |
g=1 | 0, 0, 0, 66, 121056, 29099400, 4233172704, 496392888006,... |
g=2 | ,... |
Characteristic classes:
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1+116\lambda\) | \(0\) | \(\frac{ 29}{ 2}\lambda\) | \(\frac{ 79}{ 6000}\) |
\(3\) | \(1\) | \(\frac{ 3}{ 8}\) | \(-\frac{ 29}{ 2}\lambda\) |
\(0\) | \(0\) | \(1\) | \(0\) |
\(24\) | \(0\) | \(3\) | \(1-116\lambda\) |
copy data \(21.+14.053465106I\) | \(-8.-5.621386042I\) | \(\frac{ 5}{ 2}+\frac{ 725}{ 2}\lambda\) | \(-.337500198-\frac{ 580}{ 3}\lambda\) |
\(75\) | \(-29\) | \(\frac{ 75}{ 8}\) | \(-\frac{ 5}{ 2}-\frac{ 725}{ 2}\lambda\) |
\(240\) | \(-96\) | \(31\) | \(-8.-5.621386042I\) |
\(600+\frac{ 1}{ 1000000000}I\) | \(-240\) | \(75\) | \(-19.-14.053465106I\) |
copy data Basis of the Doran-Morgan lattice
\(-116\lambda\) | \(7\) | \(1\) | \(1\) |
\(-3\) | \(-12\) | \(-1\) | \(0\) |
\(0\) | \(24\) | \(0\) | \(0\) |
\(-24\) | \(0\) | \(0\) | \(0\) |
copy data