New Number: 2.54 | AESZ: 41 | Superseeker: 2 -104 | Hash: a9ddeed4299f59fb9ac9f6f248383b8f
Degree: 2
\(\theta^4-2 x(2\theta+1)^2(7\theta^2+7\theta+3)+2^{2} 3^{4} x^{2}(2\theta+1)(\theta+1)^2(2\theta+3)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 6, 54, 60, -19530, ... --> OEIS Normalized instanton numbers (n0=1): 2, -7, -104, -588, 3300, ... ; Common denominator:...
Discriminant
\(1-56z+1296z^2\)
Local exponents
Note:
Hadamard product $I \ast \delta$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, 2, -54, -2806, -37686, 412502, 27728082, 458383830,...
Coefficients of the q-coordinate : 0, 1, -14, 207, -1868, 19671, -198834, 1196141,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(.872284041I\) | \(-\frac{ 1}{ 6}+30\lambda\) | \(-\frac{ 1}{ 12}+15\lambda\) | \(-\frac{ 1}{ 243}\sqrt{ 3}ln(2)^2/(-8I\lambdaPi^3)^(\frac{ 1}{ 6})+5\lambda\) |
\(6\) | \(2\) | \(\frac{ 1}{ 2}\) | \(\frac{ 1}{ 12}-15\lambda\) |
\(-12\) | \(-2\) | \(0\) | \(-\frac{ 1}{ 6}+30\lambda\) |
\(72\) | \(12\) | \(6\) | \(2.-.872284041I\) |
copy data \(2.+.872284041I\) | \(-\frac{ 1}{ 6}-30\lambda\) | \(\frac{ 1}{ 12}+15\lambda\) | \(-\frac{ 1}{ 243}\sqrt{ 3}ln(2)^2/(-8I\lambdaPi^3)^(\frac{ 1}{ 6})-5\lambda\) |
\(6\) | \(0\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 12}-15\lambda\) |
\(12\) | \(-2\) | \(2\) | \(-\frac{ 1}{ 6}-30\lambda\) |
\(72\) | \(-12\) | \(6\) | \(-.872284041I\) |
copy data Basis of the Doran-Morgan lattice
\(1-\frac{ 872284041}{ 1000000000}I\) | \(24\) | \(\frac{ 7}{ 6}\) | \(1\) |
\(-6\) | \(-48\) | \(-1\) | \(0\) |
\(12\) | \(72\) | \(0\) | \(0\) |
\(-72\) | \(0\) | \(0\) | \(0\) |
copy data