Calabi-Yau differential operator database v.3
Search
Browse
About
by local exponents
superseeker
by toplogical invariants
All spectra sorted by number of corresponding singular points
Local exponents
$\Sigma$
$ W$
Type
# singular points
1
0 1 1 2
1337
2
0 1 3 4
587
3
0 0 0 0
578
4
0 1/2 1/2 1
135
5
1 1 1 1
113
6
0 -1/2 1 3/2
93
7
1/2 1 1 3/2
47
8
-1/2 0 1 3/2
44
9
0 0 1 1
35
10
0 0
34
11
1 2 3 4
31
12
0 1/2 1
29
13
0 0 0
27
14
1/2 1/2 3/2 3/2
26
15
1/2 1/2 1/2 1/2
22
16
0 1/2 3/2 2
19
17
1/2 1 2 5/2
19
18
3/4 1 1 5/4
15
19
1/3 2/3 4/3 5/3
15
20
1 1 2 2
14
21
1 2 4 5
14
22
1 1
14
23
1/3 1/2 1/2 2/3
13
24
3/2 3/2 3/2 3/2
11
25
2/3 1 1 4/3
11
26
1 1 1
11
27
0 1 -2 3
10
28
1 2 2 3
10
29
1 3/2 5/2 3
10
30
0 1/3 2/3 1
10
31
1/6 5/6 7/6 11/6
10
32
0 1/6 5/6 1
10
33
1/2 3/4 5/4 3/2
10
34
1/2 2/3 4/3 3/2
10
35
0 0 -1 1
9
36
1/4 3/4 5/4 7/4
8
37
0 1/4 3/4 1
8
38
3/2 2 2 5/2
7
39
2 2 2 2
7
40
1 3/2 3/2 2
6
41
0 2 3 5
6
42
5/6 1 1 7/6
6
43
0 1/3 1 4/3
6
44
3/2 11/6 13/6 5/2
6
45
3/2 7/4 9/4 5/2
6
46
3/2 5/3 7/3 5/2
6
47
1/2 5/6 7/6 3/2
6
48
1/2 5/2 7/2 11/2
6
49
0 1/2 1 3/2
5
50
1/4 3/4 7/4 9/4
5
51
1/4 1/2 1/2 3/4
5
52
7/2 7/2 7/2 7/2
4
53
4 4 4 4
4
54
1 2 3
4
55
5/6 5/6 7/6 7/6
3
56
0 -1/6 1 7/6
3
57
0 1/4 1 5/4
3
58
1/3 1/3 2/3 2/3
3
59
2/3 5/6 7/6 4/3
3
60
3 3 3 3
3
61
5/2 5/2 5/2 5/2
2
62
-1/2 -1/2 1/2 1/2
2
63
1/3 5/6 11/6 7/3
2
64
1/2 3/2 3/2 5/2
2
65
1/4 1/3 2/3 3/4
2
66
1/5 2/5 3/5 4/5
2
67
3/4 3/4 5/4 5/4
2
68
3/5 4/5 6/5 7/5
2
69
2/3 3/4 5/4 4/3
2
70
0 -1/4 1 5/4
2
71
1 4/3 5/3 2
2
72
0 0 -1/4 1/4
2
73
2/3 1 4/3
2
74
3 4 4 5
1
75
13/4 13/4 15/4 15/4
1
76
4 5 5 6
1
77
5 6 7 8
1
78
0 -1 1 -2
1
79
4/5 9/10 11/10 6/5
1
80
7/10 9/10 11/10 13/10
1
81
11/12 11/12 13/12 13/12
1
82
7/8 7/8 9/8 9/8
1
83
3/4 7/8 9/8 5/4
1
84
3/4 11/12 13/12 5/4
1
85
3/4 5/6 7/6 5/4
1
86
19/24 23/24 25/24 29/24
1
87
17/24 23/24 25/24 31/24
1
88
0 1/6 1 7/6
1
89
2/3 2/3 7/6 7/6
1
90
1/2 5/8 9/8 5/4
1
91
9/8 5/4 3/2 13/8
1
92
0 1/4 -3/4 1
1
93
1 5/4 7/4 2
1
94
3/8 7/8 15/8 19/8
1
95
0 3/4 1 7/4
1
96
1/2 3/4 3/2 7/4
1
97
1/2 5/4 3/2 9/4
1
98
1/2 1/2 5/2 5/2
1
99
7/8 9/8 15/8 17/8
1
100
5/4 5/4 7/4 7/4
1
101
1/2 3/4 9/4 5/2
1
102
11/6 11/6 13/6 13/6
1
103
41/24 47/24 49/24 55/24
1
104
13/8 15/8 17/8 19/8
1
105
7/4 15/8 17/8 9/4
1
106
-3/8 3/8 -5/8 -11/8
1
107
17/10 19/10 21/10 23/10
1
108
5/3 11/6 13/6 7/3
1
109
19/12 23/12 25/12 29/12
1
110
1/2 3/2 5/2 7/2
1
111
2/3 5/3 5/3 8/3
1
112
1/3 1/2 3/2 5/3
1
113
7/12 11/12 13/12 17/12
1
114
5/8 7/8 9/8 11/8
1
115
1/3 1 1 5/3
1
116
5/2 3 3 7/2
1
117
9/4 11/4 13/4 15/4
1
118
4/3 3/2 3/2 5/3
1
119
4/3 4/3 5/3 5/3
1
120
0 1/4 7/4 2
1
121
0 0 2 2
1
122
0 0 -1/3 1/3
1
123
1/2 1/2
1
124
1/3 2/3
1
125
1/4 3/4
1
126
1/6 5/6
1
127
-3/4 -1/4
1
128
-5/6 -1/6
1
129
0 1/3
1
130
-1/3 0
1
131
0 1/2
1
132
-1/2 0
1
133
-2/3 0
1
134
0 2/3
1
135
-1 0
1
136
-1/2 -1/2
1
137
-2/3 -1/3
1
138
1/6 1/2 5/6
1
139
1/4 1/2 3/4
1
140
1/3 1/2 2/3
1
141
1/2 1/2 1/2
1
142
-1/2 0 1/2
1
143
-2/3 0 2/3
1
144
3/4 1 5/4
1
145
1/3 1 5/3
1
146
1/2 1 3/2
1
147
-1 0 1
1
148
-1/3 0 1/3
1
149
-3/4 -1/2 -1/4
1
150
-5/6 -1/2 -1/6
1
151
-2/3 -1/2 -1/3
1
152
1/10 3/10 7/10 9/10
1
153
1/8 3/8 5/8 7/8
1
154
1/6 1/3 2/3 5/6
1
155
1/12 5/12 7/12 11/12
1
156
1/6 1/4 3/4 5/6
1
157
1/6 1/6 5/6 5/6
1
158
1/6 1/2 1/2 5/6
1