1
New Number: 6.33 | AESZ: | Superseeker: 352 26115552 | Hash: 0677bb20f37d2fa88bafbc665d5157c1
Degree: 6
\(\theta^4-2^{4} x\left(96\theta^4+192\theta^3+404\theta^2+308\theta+85\right)+2^{12} x^{2}\left(112\theta^4+448\theta^3+416\theta^2-64\theta-159\right)+2^{20} x^{3}\left(192\theta^4+1152\theta^3+3448\theta^2+5160\theta+3101\right)-2^{28} x^{4}\left(272\theta^4+2176\theta^3+6880\theta^2+10112\theta+5757\right)-2^{38} 3 x^{5}\left(8\theta^4+80\theta^3+315\theta^2+575\theta+407\right)+2^{48} 3^{2} x^{6}\left((\theta+3)^4\right)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 1360, 1516304, 1522167040, 1444349938960, ... --> OEIS Normalized instanton numbers (n0=1): 352, 60664, 26115552, 16623590600, 13165993300256, ... ; Common denominator:...
\((256z-1)^2(768z-1)^2(256z+1)^2\)
\(0\) | \(\frac{ 1}{ 768}\) | \(\infty\) | \(-\frac{ 1}{ 256}\) | \(\frac{ 1}{ 256}\) |
---|---|---|---|---|
\(0\) | \(0\) | \(3\) | \(0\) | \(0\) |
\(0\) | \(1\) | \(3\) | \(0\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(-2\) | \(3\) | \(1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(3\) | \(3\) | \(1\) | \(1\) |
2
New Number: 6.34 | AESZ: | Superseeker: 4/3 -124/81 | Hash: 1153f8807d42d96ede28f7a8d06c144b
Degree: 6
\(3^{2} \theta^4-2^{2} 3 x\left(8\theta^4+16\theta^3+27\theta^2+19\theta+5\right)-2^{4} x^{2}\left(272\theta^4+1088\theta^3+1984\theta^2+1792\theta+621\right)+2^{8} x^{3}\left(192\theta^4+1152\theta^3+3448\theta^2+5160\theta+3101\right)+2^{12} x^{4}\left(112\theta^4+896\theta^3+2432\theta^2+2560\theta+753\right)-2^{16} x^{5}\left(96\theta^4+960\theta^3+3860\theta^2+7300\theta+5389\right)+2^{24} x^{6}\left((\theta+3)^4\right)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 20/3, 332/3, 13360/27, 966020/81, ... --> OEIS Normalized instanton numbers (n0=1): 4/3, -14/9, -124/81, -4498/243, 37024/729, ... ; Common denominator:...
\((16z-1)^2(16z-3)^2(16z+1)^2\)
\(0\) | \(-\frac{ 1}{ 16}\) | \(\frac{ 3}{ 16}\) | \(\infty\) | \(\frac{ 1}{ 16}\) |
---|---|---|---|---|
\(0\) | \(0\) | \(0\) | \(3\) | \(0\) |
\(0\) | \(0\) | \(1\) | \(3\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(1\) | \(-2\) | \(3\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(1\) | \(3\) | \(3\) | \(1\) |
3
New Number: 8.55 | AESZ: | Superseeker: 1 68/9 | Hash: 39ed8ce7572bc79a333f77c892033bcf
Degree: 8
\(\theta^4-x\left(33\theta^4+98\theta^3+105\theta^2+56\theta+12\right)+2^{3} x^{2}\left(34\theta^4+276\theta^3+609\theta^2+582\theta+216\right)+2^{4} 3 x^{3}\left(11\theta^4-170\theta^3-941\theta^2-1520\theta-846\right)-2^{7} 3^{2} x^{4}(2\theta^2+6\theta+5)(4\theta^2+12\theta-31)+2^{8} 3 x^{5}\left(11\theta^4+302\theta^3+1183\theta^2+1652\theta+726\right)+2^{11} x^{6}\left(34\theta^4+132\theta^3-39\theta^2-708\theta-747\right)-2^{12} x^{7}\left(33\theta^4+298\theta^3+1005\theta^2+1492\theta+816\right)+2^{16} x^{8}\left((\theta+3)^4\right)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 12, 120, 1216, 13080, ... --> OEIS Normalized instanton numbers (n0=1): 1, -2, 68/9, -30, 150, ... ; Common denominator:...
\((z-1)(16z-1)(16z^2-16z+1)(4z-1)^2(4z+1)^2\)
\(0\) | \(1\) | \(\frac{ 1}{ 4}\) | \(\infty\) | \(\frac{ 1}{ 2}-\frac{ 1}{ 4}\sqrt{ 3}\) | \(\frac{ 1}{ 2}+\frac{ 1}{ 4}\sqrt{ 3}\) | \(-\frac{ 1}{ 4}\) | \(\frac{ 1}{ 16}\) |
---|---|---|---|---|---|---|---|
\(0\) | \(0\) | \(0\) | \(3\) | \(0\) | \(0\) | \(0\) | \(0\) |
\(0\) | \(1\) | \(0\) | \(3\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(0\) | \(1\) | \(-1\) | \(3\) | \(1\) | \(1\) | \(3\) | \(1\) |
\(0\) | \(2\) | \(1\) | \(3\) | \(2\) | \(2\) | \(4\) | \(2\) |