1
New Number: 2.35 | AESZ: ~67 | Superseeker: 480 -16034720 | Hash: f06ee3928cd6d738db065f3f83d12160
Degree: 2
\(\theta^4-2^{4} 3 x(2\theta+1)^2(72\theta^2+72\theta+31)+2^{12} 3^{6} x^{2}(2\theta+1)^2(2\theta+3)^2\)
Maple LaTexCoefficients of the holomorphic solution: 1, 1488, 5351184, 24363091200, 123873273392400, ... --> OEIS Normalized instanton numbers (n0=1): 480, -226968, -16034720, 10943202744, -4352645747040, ... ; Common denominator:...
\((6912z-1)^2\)
\(0\) | \(\frac{ 1}{ 6912}\) | \(\infty\) |
---|---|---|
\(0\) | \(0\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(\frac{ 1}{ 6}\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(\frac{ 5}{ 6}\) | \(\frac{ 3}{ 2}\) |
\(0\) | \(1\) | \(\frac{ 3}{ 2}\) |
2
New Number: 2.36 | AESZ: | Superseeker: -36 128217204 | Hash: 4dbde07f1392f8d49d0e10858d3a17f1
Degree: 2
\(\theta^4-2^{2} 3^{2} x(3\theta+1)(3\theta+2)(72\theta^2+72\theta+31)+2^{8} 3^{8} x^{2}(3\theta+1)(3\theta+2)(3\theta+4)(3\theta+5)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 2232, 13377960, 102324983040, 875961004703400, ... --> OEIS Normalized instanton numbers (n0=1): -36, -486279, 128217204, -74772628524, 63925611915744, ... ; Common denominator:...
\((11664z-1)^2\)
\(0\) | \(\infty\) | \(\frac{ 1}{ 11664}\) |
---|---|---|
\(0\) | \(\frac{ 1}{ 3}\) | \(0\) |
\(0\) | \(\frac{ 2}{ 3}\) | \(\frac{ 1}{ 6}\) |
\(0\) | \(\frac{ 4}{ 3}\) | \(\frac{ 5}{ 6}\) |
\(0\) | \(\frac{ 5}{ 3}\) | \(1\) |
3
New Number: 2.37 | AESZ: | Superseeker: -2592 81451104 | Hash: fb56d2f39692cfb98f66d467355b3c99
Degree: 2
\(\theta^4-2^{4} 3 x(4\theta+1)(4\theta+3)(72\theta^2+72\theta+31)+2^{12} 3^{6} x^{2}(4\theta+1)(4\theta+3)(4\theta+5)(4\theta+7)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 4464, 62430480, 1125574813440, 22774986122288400, ... --> OEIS Normalized instanton numbers (n0=1): -2592, -307800, 81451104, 144135316512, 98667659422368, ... ; Common denominator:...
\((27648z-1)^2\)
\(0\) | \(\frac{ 1}{ 27648}\) | \(\infty\) |
---|---|---|
\(0\) | \(0\) | \(\frac{ 1}{ 4}\) |
\(0\) | \(\frac{ 1}{ 6}\) | \(\frac{ 3}{ 4}\) |
\(0\) | \(\frac{ 5}{ 6}\) | \(\frac{ 5}{ 4}\) |
\(0\) | \(1\) | \(\frac{ 7}{ 4}\) |
4
New Number: 2.38 | AESZ: 61 | Superseeker: -41184 -5124430612320 | Hash: 191cd9ad5f43862072f3be6811803748
Degree: 2
\(\theta^4-2^{4} 3^{2} x(6\theta+1)(6\theta+5)(72\theta^2+72\theta+31)+2^{12} 3^{8} x^{2}(6\theta+1)(6\theta+5)(6\theta+7)(6\theta+11)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 22320, 2060205840, 248752033770240, 33839074380496104720, ... --> OEIS Normalized instanton numbers (n0=1): -41184, 251271360, -5124430612320, 160031225395327320, -6251395923736354968480, ... ; Common denominator:...
\((186624z-1)^2\)
\(0\) | \(\frac{ 1}{ 186624}\) | \(\infty\) |
---|---|---|
\(0\) | \(0\) | \(\frac{ 1}{ 6}\) |
\(0\) | \(\frac{ 1}{ 6}\) | \(\frac{ 5}{ 6}\) |
\(0\) | \(\frac{ 5}{ 6}\) | \(\frac{ 7}{ 6}\) |
\(0\) | \(1\) | \(\frac{ 11}{ 6}\) |
5
New Number: 2.58 | AESZ: 46 | Superseeker: -6 -104 | Hash: 2226ec115674e71c483ba2c0350e8adf
Degree: 2
\(\theta^4-2 3 x(2\theta+1)^2(9\theta^2+9\theta+5)+2^{2} 3^{6} x^{2}(2\theta+1)(\theta+1)^2(2\theta+3)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 30, 1782, 129900, 10463670, ... --> OEIS Normalized instanton numbers (n0=1): -6, -6, -104, 36, -4812, ... ; Common denominator:...
\((108z-1)^2\)
\(0\) | \(\frac{ 1}{ 108}\) | \(\infty\) |
---|---|---|
\(0\) | \(0\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(\frac{ 1}{ 6}\) | \(1\) |
\(0\) | \(\frac{ 5}{ 6}\) | \(1\) |
\(0\) | \(1\) | \(\frac{ 3}{ 2}\) |
6
New Number: 3.15 | AESZ: | Superseeker: -32 -16288 | Hash: e21c92d8f9a2222be40fdc71ea51ee35
Degree: 3
\(\theta^4+2^{3} x\left(21\theta^4+42\theta^3+30\theta^2+9\theta+1\right)-2^{6} x^{2}(\theta+1)^2(96\theta^2+192\theta+77)+2^{9} 5^{2} x^{3}(\theta+1)(\theta+2)(2\theta+1)(2\theta+5)\)
Maple LaTexCoefficients of the holomorphic solution: 1, -8, 720, -68480, 8123920, ... --> OEIS Normalized instanton numbers (n0=1): -32, 468, -16288, 1681645/2, -53608288, ... ; Common denominator:...
\((200z+1)(-1+16z)^2\)
\(0\) | \(-\frac{ 1}{ 200}\) | \(\infty\) | \(\frac{ 1}{ 16}\) |
---|---|---|---|
\(0\) | \(0\) | \(\frac{ 1}{ 2}\) | \(0\) |
\(0\) | \(1\) | \(1\) | \(\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(2\) | \(\frac{ 5}{ 6}\) |
\(0\) | \(2\) | \(\frac{ 5}{ 2}\) | \(1\) |
7
New Number: 3.20 | AESZ: 390 | Superseeker: 19 4455 | Hash: cd8ca8746f3610e70893770a090533f9
Degree: 3
\(\theta^4-x\left(561\theta^4+1122\theta^3+975\theta^2+414\theta+70\right)+2^{2} 7^{2} x^{2}(\theta+1)^2(534\theta^2+1068\theta+433)-2^{2} 7^{4} 13^{2} x^{3}(\theta+1)(\theta+2)(2\theta+1)(2\theta+5)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 70, 8442, 1192660, 182057050, ... --> OEIS Normalized instanton numbers (n0=1): 19, -276, 4455, -104648, 2969383, ... ; Common denominator:...
\(-(169z-1)(-1+196z)^2\)
\(0\) | \(\frac{ 1}{ 196}\) | \(\infty\) | \(\frac{ 1}{ 169}\) |
---|---|---|---|
\(0\) | \(0\) | \(\frac{ 1}{ 2}\) | \(0\) |
\(0\) | \(\frac{ 1}{ 6}\) | \(1\) | \(1\) |
\(0\) | \(\frac{ 5}{ 6}\) | \(2\) | \(1\) |
\(0\) | \(1\) | \(\frac{ 5}{ 2}\) | \(2\) |
8
New Number: 5.65 | AESZ: 273 | Superseeker: 63/5 14016/5 | Hash: cf49bc645cb0404ce7bc9ca1d41d3152
Degree: 5
\(5^{2} \theta^4-3 5 x\left(333\theta^4+882\theta^3+781\theta^2+340\theta+60\right)+2^{2} 3^{2} x^{2}\left(5184\theta^4+40662\theta^3+71829\theta^2+47700\theta+11540\right)+2^{2} 3^{5} x^{3}\left(8424\theta^4+9720\theta^3-46899\theta^2-63045\theta-21260\right)-2^{4} 3^{8} x^{4}\left(1296\theta^4+12312\theta^3+23094\theta^2+16263\theta+3956\right)-2^{6} 3^{11} x^{5}(3\theta+2)(3\theta+4)(6\theta+5)(6\theta+7)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 36, 2196, 161280, 13032900, ... --> OEIS Normalized instanton numbers (n0=1): 63/5, -747/4, 14016/5, -55584, 6071598/5, ... ; Common denominator:...
\(-(-1+27z)(108z+5)^2(108z-1)^2\)
\(0\) | \(\frac{ 1}{ 108}\) | \(\infty\) | \(-\frac{ 5}{ 108}\) | \(\frac{ 1}{ 27}\) |
---|---|---|---|---|
\(0\) | \(0\) | \(\frac{ 2}{ 3}\) | \(0\) | \(0\) |
\(0\) | \(\frac{ 1}{ 6}\) | \(\frac{ 5}{ 6}\) | \(1\) | \(1\) |
\(0\) | \(\frac{ 5}{ 6}\) | \(\frac{ 7}{ 6}\) | \(3\) | \(1\) |
\(0\) | \(1\) | \(\frac{ 4}{ 3}\) | \(4\) | \(2\) |
9
New Number: 5.8 | AESZ: | Superseeker: 84 1522388/3 | Hash: f4b2a154823e983e64682b48f6254a15
Degree: 5
\(\theta^4-2^{2} 3 x\left(192\theta^4+240\theta^3+191\theta^2+71\theta+10\right)+2^{7} 3^{2} x^{2}\left(1746\theta^4+3960\theta^3+4323\theta^2+2247\theta+395\right)-2^{12} 3^{4} x^{3}\left(2538\theta^4+7776\theta^3+9915\theta^2+5643\theta+1030\right)+2^{17} 3^{6} x^{4}\left(1782\theta^4+6480\theta^3+8793\theta^2+4905\theta+875\right)-2^{23} 3^{11} x^{5}(\theta+1)^2(3\theta+1)(3\theta+5)\)
Maple LaTexCoefficients of the holomorphic solution: 1, 120, 34920, 13157760, 5790070440, ... --> OEIS Normalized instanton numbers (n0=1): 84, 9210, 1522388/3, 120348978, 19186016160, ... ; Common denominator:...
\(-(-1+864z)(432z-1)^2(288z-1)^2\)
\(0\) | \(\frac{ 1}{ 288}\) | \(\infty\) | \(\frac{ 1}{ 432}\) | \(\frac{ 1}{ 864}\) |
---|---|---|---|---|
\(0\) | \(0\) | \(\frac{ 1}{ 3}\) | \(0\) | \(0\) |
\(0\) | \(1\) | \(1\) | \(\frac{ 1}{ 6}\) | \(1\) |
\(0\) | \(3\) | \(1\) | \(\frac{ 5}{ 6}\) | \(1\) |
\(0\) | \(4\) | \(\frac{ 5}{ 3}\) | \(1\) | \(2\) |
10
New Number: 8.71 | AESZ: | Superseeker: -15 14044/3 | Hash: de469dbb89801caa07ec523e3b0e4772
Degree: 8
\(\theta^4+3 x\left(111\theta^4+186\theta^3+169\theta^2+76\theta+14\right)+2 3^{2} x^{2}\left(2529\theta^4+6930\theta^3+9483\theta^2+6096\theta+1508\right)+2^{2} 3^{4} x^{3}\left(11367\theta^4+32886\theta^3+47658\theta^2+36099\theta+10084\right)+2^{3} 3^{6} x^{4}\left(37017\theta^4+100278\theta^3+103626\theta^2+56025\theta+11582\right)+2^{4} 3^{9} x^{5}\left(29160\theta^4+80676\theta^3+84897\theta^2+27261\theta-568\right)+2^{5} 3^{12} x^{6}\left(16200\theta^4+40824\theta^3+53991\theta^2+31131\theta+6578\right)+2^{7} 3^{17} x^{7}\left(360\theta^4+936\theta^3+1056\theta^2+585\theta+131\right)+2^{9} 3^{20} x^{8}(\theta+1)^2(6\theta+5)(6\theta+7)\)
Maple LaTexCoefficients of the holomorphic solution: 1, -42, 2682, -200436, 16310250, ... --> OEIS Normalized instanton numbers (n0=1): -15, 39, 14044/3, 213069/2, 462576, ... ; Common denominator:...
\((27z+1)(54z+1)(108z+1)^2(1944z^2+18z+1)^2\)
\(0\) | \(-\frac{ 1}{ 216}-\frac{ 1}{ 216}\sqrt{ 23}I\) | \(\infty\) | \(-\frac{ 1}{ 54}\) | \(-\frac{ 1}{ 108}\) | \(-\frac{ 1}{ 216}+\frac{ 1}{ 216}\sqrt{ 23}I\) | \(-\frac{ 1}{ 27}\) |
---|---|---|---|---|---|---|
\(0\) | \(0\) | \(\frac{ 5}{ 6}\) | \(0\) | \(0\) | \(0\) | \(0\) |
\(0\) | \(1\) | \(1\) | \(1\) | \(\frac{ 1}{ 6}\) | \(1\) | \(1\) |
\(0\) | \(3\) | \(1\) | \(1\) | \(\frac{ 5}{ 6}\) | \(3\) | \(1\) |
\(0\) | \(4\) | \(\frac{ 7}{ 6}\) | \(2\) | \(1\) | \(4\) | \(2\) |