### Summary

You searched for: superseeker=16,-13

Your search produced exactly one match

1

New Number: 8.9 |  AESZ: 174  |  Superseeker: 16 -13  |  Hash: 3f987b46d9ebf201eeead1a885b78e66

Degree: 8

$\theta^4-x(11\theta^2+11\theta+3)(17\theta^2+17\theta+6)+x^{2}\left(8711\theta^4+33980\theta^3+47095\theta^2+26230\theta+5232\right)-2^{3} 3^{2} x^{3}\left(187\theta^4-1122\theta^3-3436\theta^2-2595\theta-684\right)+2^{4} 3^{2} x^{4}\left(8639\theta^4+17278\theta^3-11650\theta^2-20289\theta-6102\right)+2^{6} 3^{4} x^{5}\left(187\theta^4+1870\theta^3+1052\theta^2-163\theta-216\right)+2^{6} 3^{4} x^{6}\left(8711\theta^4+864\theta^3-2579\theta^2+864\theta+828\right)+2^{9} 3^{6} x^{7}(11\theta^2+11\theta+3)(17\theta^2+17\theta+6)+2^{12} 3^{8} x^{8}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 18, 798, 45864, 2994894, ...
--> OEIS
Normalized instanton numbers (n0=1): 16, 7/2, -13, 11663/2, -26414, ... ; Common denominator:...

#### Discriminant

$(81z^2+99z-1)(64z^2+88z-1)(1+72z^2)^2$

#### Local exponents

$-\frac{ 11}{ 16}-\frac{ 5}{ 16}\sqrt{ 5}$$-\frac{ 11}{ 18}-\frac{ 5}{ 18}\sqrt{ 5}$$0-\frac{ 1}{ 12}\sqrt{ 2}I$$0$$0+\frac{ 1}{ 12}\sqrt{ 2}I$$-\frac{ 11}{ 18}+\frac{ 5}{ 18}\sqrt{ 5}$$-\frac{ 11}{ 16}+\frac{ 5}{ 16}\sqrt{ 5}$$\infty$
$0$$0$$0$$0$$0$$0$$0$$1$
$1$$1$$1$$0$$1$$1$$1$$1$
$1$$1$$3$$0$$3$$1$$1$$1$
$2$$2$$4$$0$$4$$2$$2$$1$

#### Note:

Hadamard product $b \ast g$. This operator has a second MUM-point at infinity with the same instanton numbers. It
can be reduced to an operator of degree 4 with a single MUM-point defined over $Q(\sqrt{?})$.