### Summary

You searched for: superseeker=151/13,26293/13

Your search produced exactly one match

1

New Number: 8.28 |  AESZ: 303  |  Superseeker: 151/13 26293/13  |  Hash: e081c85684dd16a72eeaf5a1b139b912

Degree: 8

$13^{2} \theta^4-13 x\left(1505\theta^4+2746\theta^3+2127\theta^2+754\theta+104\right)+2^{2} x^{2}\left(22961\theta^4-2086\theta^3-55741\theta^2-41574\theta-9256\right)+2^{5} x^{3}\left(7524\theta^4+28098\theta^3+16131\theta^2+2691\theta-52\right)-2^{7} x^{4}\left(7241\theta^4+6214\theta^3+17522\theta^2+15423\theta+4146\right)-2^{8} x^{5}\left(6087\theta^4+1806\theta^3-3905\theta^2-3796\theta-1036\right)+2^{10} x^{6}\left(553\theta^4+4062\theta^3+4405\theta^2+1752\theta+220\right)+2^{14} x^{7}\left(82\theta^4+230\theta^3+275\theta^2+160\theta+37\right)+2^{18} x^{8}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 8, 292, 15776, 1030036, ...
--> OEIS
Normalized instanton numbers (n0=1): 151/13, 1436/13, 26293/13, 719465/13, 24184128/13, ... ; Common denominator:...

#### Discriminant

$(z-1)(64z^3+304z^2+108z-1)(-13+44z+64z^2)^2$

#### Local exponents

≈$-4.362346$$-\frac{ 11}{ 32}-\frac{ 1}{ 32}\sqrt{ 329}$ ≈$-0.396684$$0$ ≈$0.009029$$-\frac{ 11}{ 32}+\frac{ 1}{ 32}\sqrt{ 329}$$1$$\infty$
$0$$0$$0$$0$$0$$0$$0$$1$
$1$$1$$1$$0$$1$$1$$1$$1$
$1$$3$$1$$0$$1$$3$$1$$1$
$2$$4$$2$$0$$2$$4$$2$$1$

#### Note:

This operator has a second MUM-point at infinity corresponding to operator 8.29