### Summary

You searched for: superseeker=118/17,672

Your search produced exactly one match

1

New Number: 8.20 |  AESZ: 213  |  Superseeker: 118/17 672  |  Hash: d430b37f4ca641af0b82cbef83547c51

Degree: 8

$17^{2} \theta^4-2 17 x\left(647\theta^4+1240\theta^3+977\theta^2+357\theta+51\right)-2^{2} x^{2}\left(14437\theta^4+89752\theta^3+147734\theta^2+92123\theta+20400\right)+2^{2} 3 x^{3}\left(21538\theta^4+25680\theta^3-41979\theta^2-56151\theta-17442\right)+2^{3} x^{4}\left(51920\theta^4+166384\theta^3-83149\theta^2-217017\theta-79362\right)-2^{4} 3 x^{5}\left(9360\theta^4-26784\theta^3-43813\theta^2-21965\theta-3496\right)-2^{5} 3 x^{6}\left(10160\theta^4-96\theta^3-10535\theta^2-5385\theta-438\right)-2^{8} 3^{2} x^{7}\left(288\theta^4+864\theta^3+1082\theta^2+641\theta+147\right)-2^{11} 3^{2} x^{8}(4\theta+3)(\theta+1)^2(4\theta+5)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 6, 162, 6252, 290610, ...
--> OEIS
Normalized instanton numbers (n0=1): 118/17, 873/17, 672, 447987/34, 5358846/17, ... ; Common denominator:...

#### Discriminant

$-(4z+1)(32z^3+40z^2+78z-1)(-17+18z+48z^2)^2$

#### Local exponents

$-\frac{ 3}{ 16}-\frac{ 1}{ 48}\sqrt{ 897}$ ≈$-0.631368-1.433512I$ ≈$-0.631368+1.433512I$$-\frac{ 1}{ 4}$$0$ ≈$0.012736$$-\frac{ 3}{ 16}+\frac{ 1}{ 48}\sqrt{ 897}$$\infty$
$0$$0$$0$$0$$0$$0$$0$$\frac{ 3}{ 4}$
$1$$1$$1$$1$$0$$1$$1$$1$
$3$$1$$1$$1$$0$$1$$3$$1$
$4$$2$$2$$2$$0$$2$$4$$\frac{ 5}{ 4}$