### Summary

You searched for: superseeker=10,18994/9

Your search produced exactly one match

1

New Number: 8.87 |  AESZ:  |  Superseeker: 10 18994/9  |  Hash: 038b62cbc5b6e43ac232ededcc3b6a59

Degree: 8

$\theta^4+2 x\theta(-2-13\theta-22\theta^2+88\theta^3)+2^{2} x^{2}\left(3323\theta^4+722\theta^3+2365\theta^2+1306\theta+256\right)+2^{4} 3 x^{3}\left(12903\theta^4+16874\theta^3+21943\theta^2+11164\theta+2164\right)+2^{5} x^{4}\left(618707\theta^4+1367710\theta^3+1570347\theta^2+801712\theta+157652\right)+2^{9} 3 x^{5}\left(248985\theta^4+660583\theta^3+726977\theta^2+362865\theta+69886\right)+2^{11} x^{6}\left(1818051\theta^4+4794576\theta^3+4692593\theta^2+2080392\theta+357884\right)+2^{17} 5 7 x^{7}\left(3223\theta^4+8030\theta^3+8618\theta^2+4603\theta+1002\right)+2^{23} 5^{2} 7^{2} x^{8}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 0, -64, 576, 22716, ...
--> OEIS
Normalized instanton numbers (n0=1): 10, -581/4, 18994/9, -274969/8, 3458142/5, ... ; Common denominator:...

#### Discriminant

$(1+44z+2008z^2+39424z^3+32768z^4)(10z+1)^2(56z+1)^2$

#### Local exponents

$-\frac{ 1}{ 10}$$-\frac{ 1}{ 56}$$0$$s_1$$s_3$$s_2$$s_4$$\infty$
$0$$0$$0$$0$$0$$0$$0$$1$
$1$$1$$0$$1$$1$$1$$1$$1$
$3$$3$$0$$1$$1$$1$$1$$1$
$4$$4$$0$$2$$2$$2$$2$$1$

#### Note:

This is operator "8.87" from ...