### Summary

You searched for: superseeker=-795/11,-1594688/11

Your search produced exactly one match

1

New Number: 8.23 |  AESZ: 285  |  Superseeker: -795/11 -1594688/11  |  Hash: 009974f32940428eb2d2d31380b138a9

Degree: 8

$11^{2} \theta^4+11 x\left(4625\theta^4+9400\theta^3+6845\theta^2+2145\theta+253\right)-x^{2}\left(4444+29513\theta+160382\theta^2+417688\theta^3+277543\theta^4\right)+x^{3}\left(834163\theta^4+679428\theta^3-558926\theta^2-423489\theta-72226\right)+x^{4}\left(94818+425155\theta+555785\theta^2-506572\theta^3-1395491\theta^4\right)+x^{5}\left(1438808\theta^4-57118\theta^3+338255\theta^2+307104\theta+49505\right)-x^{6}\left(33242+146466\theta+278875\theta^2+453366\theta^3+689717\theta^4\right)+2 19 x^{7}\left(3014\theta^4+6178\theta^3+5175\theta^2+2086\theta+341\right)-2^{2} 19^{2} x^{8}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -23, 3043, -620663, 154394851, ...
--> OEIS
Normalized instanton numbers (n0=1): -795/11, 89027/44, -1594688/11, 166273857/11, -21441641455/11, ... ; Common denominator:...

#### Discriminant

$-(-1-425z+374z^2-78z^3+z^4)(11-25z+38z^2)^2$

#### Local exponents

$0$$\frac{ 25}{ 76}-\frac{ 1}{ 76}\sqrt{ 1047}I$$\frac{ 25}{ 76}+\frac{ 1}{ 76}\sqrt{ 1047}I$$#ND+#NDI$$\infty$
$0$$0$$0$$0$$1$
$0$$1$$1$$1$$1$
$0$$3$$3$$1$$1$
$0$$4$$4$$2$$1$

#### Note:

This operator has a second MUM-point at infinity, corresponding to operator 8.22