### Summary

You searched for: superseeker=-64,54464

Your search produced exactly one match

1

New Number: 8.81 |  AESZ:  |  Superseeker: -64 54464  |  Hash: 3cc4cfea037192a297dc29928555ed1d

Degree: 8

$\theta^4+2^{4} x\left(40\theta^4+56\theta^3+46\theta^2+18\theta+3\right)+2^{10} x^{2}\left(200\theta^4+296\theta^3+357\theta^2+236\theta+58\right)+2^{16} x^{3}\left(720\theta^4+888\theta^3+446\theta^2+417\theta+126\right)+2^{22} x^{4}\left(1828\theta^4+2360\theta^3+1237\theta^2-93\theta-199\right)+2^{29} x^{5}\left(1684\theta^4+1864\theta^3+2547\theta^2+865\theta+28\right)+2^{36} x^{6}\left(1124\theta^4+1416\theta^3+1715\theta^2+969\theta+221\right)+2^{43} 3 x^{7}\left(148\theta^4+344\theta^3+367\theta^2+195\theta+42\right)+2^{53} 3^{2} x^{8}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -48, 4112, -470784, 65066256, ...
--> OEIS
Normalized instanton numbers (n0=1): -64, 2380, 54464, -1677212, -279711424, ... ; Common denominator:...

#### Discriminant

$(128z+1)(256z+1)(64z+1)^2(24576z^2+64z+1)^2$

#### Local exponents

$-\frac{ 1}{ 64}$$-\frac{ 1}{ 128}$$-\frac{ 1}{ 256}$$-\frac{ 1}{ 768}-\frac{ 1}{ 768}\sqrt{ 23}I$$-\frac{ 1}{ 768}+\frac{ 1}{ 768}\sqrt{ 23}I$$0$$\infty$
$0$$0$$0$$0$$0$$0$$1$
$\frac{ 1}{ 2}$$1$$1$$1$$1$$0$$1$
$\frac{ 1}{ 2}$$1$$1$$3$$3$$0$$1$
$1$$2$$2$$4$$4$$0$$1$

#### Note:

This is operator "8.81" from ...