### Summary

You searched for: superseeker=-64,-131904

Your search produced exactly one match

1

New Number: 8.44 |  AESZ:  |  Superseeker: -64 -131904  |  Hash: 2d570a3dc1cbc5b6596272f33b48fc98

Degree: 8

$\theta^4-2^{5} x\left(36\theta^4+6\theta^3+8\theta^2+5\theta+1\right)+2^{8} x^{2}\left(2088\theta^4+1080\theta^3+1301\theta^2+574\theta+93\right)-2^{13} x^{3}\left(15712\theta^4+15960\theta^3+16990\theta^2+7785\theta+1381\right)+2^{18} x^{4}\left(65988\theta^4+103368\theta^3+107829\theta^2+52005\theta+9754\right)-2^{24} x^{5}\left(77224\theta^4+157960\theta^3+166412\theta^2+81089\theta+15251\right)+2^{30} x^{6}\left(47156\theta^4+110400\theta^3+112227\theta^2+50868\theta+8885\right)-2^{38} 7 x^{7}\left(452\theta^4+1168\theta^3+1301\theta^2+717\theta+160\right)+2^{46} 7^{2} x^{8}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 32, 2096, 172544, 15870736, ...
--> OEIS
Normalized instanton numbers (n0=1): -64, -2084, -131904, -10745878, -1015115456, ... ; Common denominator:...

#### Discriminant

$(1-192z+1024z^2)(128z-1)^2(14336z^2-352z+1)^2$

#### Local exponents

$0$$\frac{ 11}{ 896}-\frac{ 1}{ 896}\sqrt{ 65}$$\frac{ 3}{ 32}-\frac{ 1}{ 16}\sqrt{ 2}$$\frac{ 1}{ 128}$$\frac{ 11}{ 896}+\frac{ 1}{ 896}\sqrt{ 65}$$\frac{ 3}{ 32}+\frac{ 1}{ 16}\sqrt{ 2}$$\infty$
$0$$0$$0$$0$$0$$0$$1$
$0$$1$$1$$\frac{ 1}{ 2}$$1$$1$$1$
$0$$3$$1$$\frac{ 1}{ 2}$$3$$1$$1$
$0$$4$$2$$1$$4$$2$$1$

#### Note:

This is operator "8.44" from ...