### Summary

You searched for: superseeker=-52/3,-17428

Your search produced exactly one match

1

New Number: 5.15 |  AESZ: 117  |  Superseeker: -52/3 -17428  |  Hash: 111a4ce3248a309bf6283916fd9f11c4

Degree: 5

$3^{2} \theta^4+2^{2} 3 x\left(256\theta^4+176\theta^3+133\theta^2+45\theta+6\right)+2^{7} x^{2}\left(2588\theta^4+1952\theta^3+584\theta^2+15\theta-15\right)+2^{12} x^{3}\left(3183\theta^4+2466\theta^3+1801\theta^2+711\theta+111\right)+2^{17} 7 x^{4}\left(134\theta^4+250\theta^3+180\theta^2+55\theta+5\right)-2^{22} 7^{2} x^{5}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -8, 424, -36224, 3778216, ...
--> OEIS
Normalized instanton numbers (n0=1): -52/3, 1348/3, -17428, 884000, -163422880/3, ... ; Common denominator:...

#### Discriminant

$-(16z+1)(256z^2-176z-1)(3+224z)^2$

#### Local exponents

$-\frac{ 1}{ 16}$$-\frac{ 3}{ 224}$$\frac{ 11}{ 32}-\frac{ 5}{ 32}\sqrt{ 5}$$0$$\frac{ 11}{ 32}+\frac{ 5}{ 32}\sqrt{ 5}$$\infty$
$0$$0$$0$$0$$0$$1$
$1$$1$$1$$0$$1$$1$
$1$$3$$1$$0$$1$$1$
$2$$4$$2$$0$$2$$1$

#### Note:

There is a second MUM-point at infinity,
corresponding to Operator AESZ 212/5.31