### Summary

You searched for: superseeker=-444/5,-1501908/5

Your search produced exactly one match

1

New Number: 4.39 |  AESZ: 210  |  Superseeker: -444/5 -1501908/5  |  Hash: 155d0198a5b26de08a0c2caf680f0786

Degree: 4

$5^{2} \theta^4+2^{2} 5 x\left(688\theta^4+1352\theta^3+981\theta^2+305\theta+35\right)+2^{4} x^{2}\left(5856\theta^4+7008\theta^3+96\theta^2-1260\theta-265\right)+2^{10} x^{3}\left(176\theta^4+120\theta^3+69\theta^2+30\theta+5\right)+2^{12} x^{4}\left((2\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -28, 4716, -1226800, 389349100, ...
--> OEIS
Normalized instanton numbers (n0=1): -444/5, 16653/5, -1501908/5, 199965534/5, -6573697776, ... ; Common denominator:...

#### Discriminant

$(256z^2+544z+1)(5+16z)^2$

#### Local exponents

$-\frac{ 17}{ 16}-\frac{ 3}{ 4}\sqrt{ 2}$$-\frac{ 5}{ 16}$$-\frac{ 17}{ 16}+\frac{ 3}{ 4}\sqrt{ 2}$$0$$s_1$$s_2$$\infty$
$0$$0$$0$$0$$0$$0$$\frac{ 1}{ 2}$
$1$$1$$1$$0$$1$$1$$\frac{ 1}{ 2}$
$1$$3$$1$$0$$1$$1$$\frac{ 1}{ 2}$
$2$$4$$2$$0$$2$$2$$\frac{ 1}{ 2}$

#### Note:

Sporadic operator. There is a second MUM point hidden at infinity; Operator AESZ 211/4.40