### Summary

You searched for: superseeker=-336,-4761360

Your search produced exactly one match

1

New Number: 5.105 |  AESZ: 358  |  Superseeker: -336 -4761360  |  Hash: f026b6514e3be9b730646bc9410b1049

Degree: 5

$\theta^4-2^{4} x\left(125\theta^4-62\theta^3-31\theta^2+1\right)+2^{11} x^{2}\left(640\theta^4-287\theta^3+377\theta^2+119\theta+11\right)-2^{16} x^{3}\left(5121\theta^4+4908\theta^3+5213\theta^2+2484\theta+503\right)+2^{23} 13 x^{4}\left(441\theta^4+1074\theta^3+1207\theta^2+670\theta+148\right)-2^{34} 13^{2} x^{5}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 16, -880, -180992, -12537584, ...
--> OEIS
Normalized instanton numbers (n0=1): -336, -30306, -4761360, -962369202, -225176272240, ... ; Common denominator:...

#### Discriminant

$-(128z-1)(32768z^2-208z+1)(-1+832z)^2$

#### Local exponents

$0$$\frac{ 1}{ 832}$$\frac{ 13}{ 4096}-\frac{ 7}{ 4096}\sqrt{ 7}I$$\frac{ 13}{ 4096}+\frac{ 7}{ 4096}\sqrt{ 7}I$$\frac{ 1}{ 128}$$\infty$
$0$$0$$0$$0$$0$$1$
$0$$1$$1$$1$$1$$1$
$0$$3$$1$$1$$1$$1$
$0$$4$$2$$2$$2$$1$

#### Note:

There is a second MUM-point at infinity,
corresponding to Operator AESZ 357/5.04