### Summary

You searched for: superseeker=-26/5,-234/5

Your search produced exactly one match

1

New Number: 8.59 |  AESZ:  |  Superseeker: -26/5 -234/5  |  Hash: 53885e46a1519d98ee4697de1c109214

Degree: 8

$5^{2} \theta^4+5 x\left(278\theta^4+772\theta^3+656\theta^2+270\theta+45\right)+x^{2}\left(19406\theta^4+145988\theta^3+259366\theta^2+172540\theta+41745\right)-3^{2} x^{3}\left(30338\theta^4+30636\theta^3-177680\theta^2-235350\theta-80565\right)-3^{2} x^{4}\left(189512\theta^4+1676428\theta^3+3050258\theta^2+2136012\theta+525339\right)+3^{4} x^{5}\left(173242\theta^4+651964\theta^3+972352\theta^2+649458\theta+161507\right)+3^{4} x^{6}\left(85922\theta^4+248940\theta^3+209506\theta^2+37044\theta-12717\right)+3^{6} x^{7}\left(1114\theta^4+2012\theta^3+1056\theta^2+50\theta-57\right)-3^{8} x^{8}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -9, 123, -1719, 17739, ...
--> OEIS
Normalized instanton numbers (n0=1): -26/5, -177/10, -234/5, -1837/2, -27716/5, ... ; Common denominator:...

#### Discriminant

$-(9z+1)(9z^3-1187z^2-61z-1)(-5+36z+9z^2)^2$

#### Local exponents

$-2-\frac{ 1}{ 3}\sqrt{ 41}$$-\frac{ 1}{ 9}$ ≈$-0.025688-0.0135I$ ≈$-0.025688+0.0135I$$0$$-2+\frac{ 1}{ 3}\sqrt{ 41}$ ≈$131.940265$$\infty$
$0$$0$$0$$0$$0$$0$$0$$1$
$1$$1$$1$$1$$0$$1$$1$$1$
$3$$1$$1$$1$$0$$3$$1$$1$
$4$$2$$2$$2$$0$$4$$2$$1$

#### Note:

This is operator "8.59" from ...

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex