### Summary

You searched for: superseeker=-26,-14942/3

Your search produced exactly one match

1

New Number: 5.85 |  AESZ: 319  |  Superseeker: -26 -14942/3  |  Hash: 40a034330b9ad40ec865803f0a601932

Degree: 5

$\theta^4+x\left(83\theta^4+436\theta^3+352\theta^2+134\theta+21\right)-2 3^{2} x^{2}\left(343\theta^4-548\theta^3-2555\theta^2-1749\theta-405\right)-2 3^{4} x^{3}\left(1973\theta^4+12528\theta^3+11329\theta^2+3861\theta+342\right)+3^{8} 5 x^{4}\left(473\theta^4+1000\theta^3+858\theta^2+358\theta+62\right)-3^{12} 5^{2} x^{5}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -21, 891, -48027, 2920779, ...
--> OEIS
Normalized instanton numbers (n0=1): -26, -475/2, -14942/3, -244479/2, -3574404, ... ; Common denominator:...

#### Discriminant

$-(81z+1)(81z^2-92z-1)(-1+45z)^2$

#### Local exponents

$-\frac{ 1}{ 81}$$\frac{ 46}{ 81}-\frac{ 13}{ 81}\sqrt{ 13}$$0$$\frac{ 1}{ 45}$$\frac{ 46}{ 81}+\frac{ 13}{ 81}\sqrt{ 13}$$\infty$
$0$$0$$0$$0$$0$$1$
$1$$1$$0$$1$$1$$1$
$1$$1$$0$$3$$1$$1$
$2$$2$$0$$4$$2$$1$

#### Note:

There is a second MUM-point at infinity, corresponding
to Operator AESZ 318/5.84
B-Incarnation:
Fibre product 53211- x 632--1(0)