### Summary

You searched for: superseeker=-2,3820/9

Your search produced exactly one match

1

New Number: 5.26 |  AESZ: 199  |  Superseeker: -2 3820/9  |  Hash: f7b5c9e3ad50b0885d03c98d07a051f1

Degree: 5

$\theta^4-x\left(15+88\theta+200\theta^2+224\theta^3+265\theta^4\right)+2 3 x^{2}\left(4325\theta^4+6386\theta^3+6011\theta^2+2718\theta+468\right)-2 3^{2} x^{3}\left(62015\theta^4+116478\theta^3+102361\theta^2+37422\theta+4824\right)+3^{6} 17 x^{4}\left(1465\theta^4+3092\theta^3+2686\theta^2+1140\theta+200\right)-3^{10} 17^{2} x^{5}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 15, 567, 28113, 1584279, ...
--> OEIS
Normalized instanton numbers (n0=1): -2, 28, 3820/9, 3924, 21606, ... ; Common denominator:...

#### Discriminant

$-(z-1)(81z-1)^2(51z-1)^2$

#### Local exponents

$0$$\frac{ 1}{ 81}$$\frac{ 1}{ 51}$$1$$\infty$
$0$$0$$0$$0$$1$
$0$$\frac{ 1}{ 2}$$1$$1$$1$
$0$$\frac{ 1}{ 2}$$3$$1$$1$
$0$$1$$4$$2$$1$

#### Note:

There is a second MUM-point at infinity, corresponding to
Operator AESZ 194/5.23.