### Summary

You searched for: superseeker=-188,-807540

Your search produced exactly one match

1

New Number: 4.59 |  AESZ: 283  |  Superseeker: -188 -807540  |  Hash: 987222cb05e8a3d02c76c47abefbb9f4

Degree: 4

$\theta^4+2^{2} x\left(20\theta^4+400\theta^3+281\theta^2+81\theta+9\right)-2^{4} 3 x^{2}\left(5696\theta^4+13184\theta^3+3928\theta^2+628\theta+39\right)+2^{10} 3^{2} 5 x^{3}\left(1348\theta^4+1944\theta^3+1415\theta^2+486\theta+63\right)-2^{12} 3^{7} 5^{2} x^{4}\left((2\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -36, 7236, -2257200, 860876100, ...
--> OEIS
Normalized instanton numbers (n0=1): -188, 831, -807540, 39235244, -18812436256, ... ; Common denominator:...

#### Discriminant

$-(62208z^2-560z-1)(-1+240z)^2$

#### Local exponents

$\frac{ 35}{ 7776}-\frac{ 13}{ 7776}\sqrt{ 13}$$0$$s_1$$s_2$$\frac{ 1}{ 240}$$\frac{ 35}{ 7776}+\frac{ 13}{ 7776}\sqrt{ 13}$$\infty$
$0$$0$$0$$0$$0$$0$$\frac{ 1}{ 2}$
$1$$0$$1$$1$$1$$1$$\frac{ 1}{ 2}$
$1$$0$$1$$1$$3$$1$$\frac{ 1}{ 2}$
$2$$0$$2$$2$$4$$2$$\frac{ 1}{ 2}$

#### Note:

Sporadic Operator. There is a second MUM-point hiding at
infinity, corresponding to AESZ 282/4.58