### Summary

You searched for: superseeker=-113/19,-8515/19

Your search produced exactly one match

1

New Number: 5.27 |  AESZ: 202  |  Superseeker: -113/19 -8515/19  |  Hash: 3bf3c283277de7b3808ad309fac9b7a1

Degree: 5

$19^{2} \theta^4+19 x\left(1370\theta^4+2620\theta^3+2089\theta^2+779\theta+114\right)+x^{2}\left(39521\theta^4-3916\theta^3-106779\theta^2-95266\theta-25384\right)-2^{3} x^{3}\left(1649\theta^4+19779\theta^3+29667\theta^2+17613\theta+3876\right)-2^{4} 5 x^{4}(\theta+1)(499\theta^3+1411\theta^2+1378\theta+456)-2^{9} 5^{2} x^{5}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -6, 142, -4920, 205326, ...
--> OEIS
Normalized instanton numbers (n0=1): -113/19, 2921/76, -8515/19, 146869/19, -3105422/19, ... ; Common denominator:...

#### Discriminant

$-(z-1)(32z^2+71z+1)(19+20z)^2$

#### Local exponents

$-\frac{ 71}{ 64}-\frac{ 17}{ 64}\sqrt{ 17}$$-\frac{ 19}{ 20}$$-\frac{ 71}{ 64}+\frac{ 17}{ 64}\sqrt{ 17}$$0$$1$$\infty$
$0$$0$$0$$0$$0$$1$
$1$$1$$1$$0$$1$$1$
$1$$3$$1$$0$$1$$1$
$2$$4$$2$$0$$2$$1$

#### Note:

There is a second MUM-point at infinity, corresponding to Operator AESZ 203/5.28