### Summary

You searched for: superseeker=-107,-121311

Your search produced exactly one match

1

New Number: 5.21 |  AESZ: 187  |  Superseeker: -107 -121311  |  Hash: 9a367922f464a13fa56d1c2e238faa34

Degree: 5

$\theta^4-x\left(64\theta^4-898\theta^3-653\theta^2-204\theta-27\right)-3^{2} x^{2}\left(6397\theta^4+13390\theta^3-10135\theta^2-7492\theta-1650\right)+3^{4} x^{3}\left(64745\theta^4-109026\theta^3-106415\theta^2-39528\theta-4626\right)+3^{9} 19 x^{4}\left(700\theta^4+1562\theta^3+1485\theta^2+704\theta+138\right)-3^{14} 19^{2} x^{5}\left((\theta+1)^4\right)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -27, 1971, -220941, 30762099, ...
--> OEIS
Normalized instanton numbers (n0=1): -107, -7701/4, -121311, -6204874, -518204863, ... ; Common denominator:...

#### Discriminant

$-(243z+1)(243z^2-35z-1)(-1+171z)^2$

#### Local exponents

$\frac{ 35}{ 486}-\frac{ 13}{ 486}\sqrt{ 13}$$-\frac{ 1}{ 243}$$0$$\frac{ 1}{ 171}$$\frac{ 35}{ 486}+\frac{ 13}{ 486}\sqrt{ 13}$$\infty$
$0$$0$$0$$0$$0$$1$
$1$$1$$0$$1$$1$$1$
$1$$1$$0$$3$$1$$1$
$2$$2$$0$$4$$2$$1$

#### Note:

There is a second MUM-point at infinity, corresponding to Operator AESZ 186/ 5.20