### Summary

You searched for: superseeker=-100/3,66364

Your search produced exactly one match

1

New Number: 8.75 |  AESZ:  |  Superseeker: -100/3 66364  |  Hash: 76a0af78cc3434c7a78f3edc406baa61

Degree: 8

$3^{2} \theta^4+2^{2} 3 x\left(592\theta^4+992\theta^3+913\theta^2+417\theta+78\right)+2^{7} x^{2}\left(17984\theta^4+49280\theta^3+67508\theta^2+43356\theta+10623\right)+2^{15} x^{3}\left(13472\theta^4+38976\theta^3+56498\theta^2+42534\theta+11589\right)+2^{21} x^{4}\left(29248\theta^4+79232\theta^3+81724\theta^2+43620\theta+8603\right)+2^{30} x^{5}\left(5760\theta^4+15936\theta^3+16712\theta^2+5206\theta-123\right)+2^{37} x^{6}\left(3200\theta^4+8064\theta^3+10616\theta^2+6036\theta+1263\right)+2^{47} x^{7}\left(160\theta^4+416\theta^3+466\theta^2+255\theta+56\right)+2^{55} x^{8}(4\theta+3)(\theta+1)^2(4\theta+5)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, -104, 16488, -3037568, 605558440, ...
--> OEIS
Normalized instanton numbers (n0=1): -100/3, 538/3, 66364, 9836374/3, 67135456/3, ... ; Common denominator:...

#### Discriminant

$(64z+1)(128z+1)(256z+1)^2(32768z^2+128z+3)^2$

#### Local exponents

$-\frac{ 1}{ 64}$$-\frac{ 1}{ 128}$$-\frac{ 1}{ 256}$$-\frac{ 1}{ 512}-\frac{ 1}{ 512}\sqrt{ 23}I$$-\frac{ 1}{ 512}+\frac{ 1}{ 512}\sqrt{ 23}I$$0$$\infty$
$0$$0$$0$$0$$0$$0$$\frac{ 3}{ 4}$
$1$$1$$0$$1$$1$$0$$1$
$1$$1$$1$$3$$3$$0$$1$
$2$$2$$1$$4$$4$$0$$\frac{ 5}{ 4}$

#### Note:

This is operator "8.75" from ...