Summary

You searched for: Spectrum0=1/5,2/5,3/5,4/5

Your search produced exactly one match

1

New Number: 4.66 |  AESZ: 300  |  Superseeker: -1616 -283183120  |  Hash: edc54887effd2ebcaa636dcc93baf0b7  

Degree: 4

\(\theta^4+2^{4} x\left(371\theta^4+862\theta^3+591\theta^2+160\theta+15\right)+2^{11} 5 x^{2}\left(224\theta^4+2069\theta^3+3277\theta^2+1363\theta+159\right)-2^{16} 5^{2} x^{3}\left(2089\theta^4+7500\theta^3+5533\theta^2+1500\theta+135\right)+2^{23} 5^{3} x^{4}(5\theta+1)(5\theta+2)(5\theta+3)(5\theta+4)\)

Maple   LaTex

Coefficients of the holomorphic solution: 1, -240, 378000, -941740800, 2908743037200, ...
--> OEIS
Normalized instanton numbers (n0=1): -1616, 265534, -283183120, 351860487150, -525536710386800, ... ; Common denominator:...

Discriminant

\((6400000z^2+6576z+1)(-1+320z)^2\)

Local exponents

≈\(-0.000842\) ≈\(-0.000186\)\(0\)\(s_2\)\(s_1\)\(\frac{ 1}{ 320}\)\(\infty\)
\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(\frac{ 1}{ 5}\)
\(1\)\(1\)\(0\)\(1\)\(1\)\(1\)\(\frac{ 2}{ 5}\)
\(1\)\(1\)\(0\)\(1\)\(1\)\(3\)\(\frac{ 3}{ 5}\)
\(2\)\(2\)\(0\)\(2\)\(2\)\(4\)\(\frac{ 4}{ 5}\)

Note:

Sporadic Operator.

Show more...  or download as   plain text  |  PDF  |  Maple  |  LaTex