### Summary

You searched for: sol=95199300

Your search produced exactly one match

1

New Number: 8.78 |  AESZ:  |  Superseeker: 52 48732  |  Hash: 2fb524ad6efb19e0117ae7acbd9f67b9

Degree: 8

$\theta^4-2^{2} x\left(184\theta^4+224\theta^3+175\theta^2+63\theta+9\right)+2^{4} 3 x^{2}\left(3472\theta^4+9664\theta^3+9864\theta^2+4264\theta+705\right)-2^{8} 3^{2} x^{3}\left(1936\theta^4+27936\theta^3+43336\theta^2+21528\theta+3933\right)-2^{16} 3^{3} x^{4}\left(1384\theta^4+524\theta^3-4555\theta^2-3404\theta-753\right)+2^{19} 3^{4} x^{5}\left(3440\theta^4+13712\theta^3-58\theta^2-3774\theta-1161\right)+2^{22} 3^{5} x^{6}\left(11312\theta^4-9888\theta^3-10808\theta^2-1608\theta+459\right)-2^{26} 3^{7} x^{7}(2\theta+1)(1336\theta^3+2772\theta^2+2234\theta+663)-2^{32} 3^{9} x^{8}(2\theta+1)(4\theta+3)(4\theta+5)(2\theta+3)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 36, 3780, 555120, 95199300, ...
--> OEIS
Normalized instanton numbers (n0=1): 52, -399, 48732, -992750, 98106208, ... ; Common denominator:...

#### Discriminant

$-(256z-1)(110592z^3+6912z^2-288z+1)(-1+96z+13824z^2)^2$

#### Local exponents

≈$-0.091906$$-\frac{ 1}{ 288}-\frac{ 1}{ 288}\sqrt{ 7}$$0$ ≈$0.00385$$\frac{ 1}{ 256}$$-\frac{ 1}{ 288}+\frac{ 1}{ 288}\sqrt{ 7}$ ≈$0.025556$$\infty$
$0$$0$$0$$0$$0$$0$$0$$\frac{ 1}{ 2}$
$1$$1$$0$$1$$1$$1$$1$$\frac{ 3}{ 4}$
$1$$3$$0$$1$$1$$3$$1$$\frac{ 5}{ 4}$
$2$$4$$0$$2$$2$$4$$2$$\frac{ 3}{ 2}$

#### Note:

This is operator "8.78" from ...