### Summary

You searched for: inst=38826/5

1

New Number: 7.16 |  AESZ:  |  Superseeker: 22/5 68  |  Hash: 660211ce6175f36772066594bfc33cbb

Degree: 7

$5^{2} \theta^4-2 5 x\theta(15+71\theta+112\theta^2+38\theta^3)-2^{2} x^{2}\left(4364\theta^4+15872\theta^3+24679\theta^2+19360\theta+6000\right)-2^{4} 3^{2} 5 x^{3}\left(92\theta^4+224\theta^3+103\theta^2-176\theta-165\right)+2^{6} 3^{2} x^{4}\left(1228\theta^4+10496\theta^3+30154\theta^2+35736\theta+14715\right)+2^{9} 3^{4} x^{5}(\theta+1)(38\theta^3+74\theta^2-304\theta-495)-2^{10} 3^{4} x^{6}(2\theta+13)(2\theta+3)(17\theta+39)(\theta+1)-2^{12} 3^{6} x^{7}(\theta+1)(2\theta+5)(2\theta+3)(\theta+3)$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 0, 60, 480, 16524, ...
--> OEIS
Normalized instanton numbers (n0=1): 22/5, 8, 68, 3292/5, 38826/5, ... ; Common denominator:...

#### Discriminant

$-(-1+36z)(12z+5)^2(12z+1)^2(4z-1)^2$

#### Local exponents

$-\frac{ 5}{ 12}$$-\frac{ 1}{ 12}$$0$$\frac{ 1}{ 36}$$\frac{ 1}{ 4}$$\infty$
$0$$0$$0$$0$$0$$1$
$1$$0$$0$$1$$\frac{ 1}{ 2}$$\frac{ 3}{ 2}$
$3$$1$$0$$1$$\frac{ 1}{ 2}$$\frac{ 5}{ 2}$
$4$$1$$0$$2$$1$$3$

#### Note:

This is operator "7.16" from ...

2

New Number: 8.79 |  AESZ:  |  Superseeker: 22/5 68  |  Hash: 064e5b590dd8b6a4daa1e905fbe693c2

Degree: 8

$5^{2} \theta^4-2 5 x\left(338\theta^4+412\theta^3+371\theta^2+165\theta+30\right)+2^{2} x^{2}\left(46396\theta^4+103408\theta^3+125291\theta^2+76370\theta+19080\right)-2^{4} 3 x^{3}\left(115508\theta^4+357896\theta^3+524149\theta^2+375205\theta+106530\right)+2^{6} 3^{2} x^{4}\left(173456\theta^4+669024\theta^3+1118292\theta^2+883484\theta+269049\right)-2^{11} 3^{3} x^{5}\left(20272\theta^4+91616\theta^3+168594\theta^2+142006\theta+45053\right)+2^{14} 3^{4} x^{6}\left(5792\theta^4+29504\theta^3+58300\theta^2+51220\theta+16641\right)-2^{21} 3^{5} x^{7}(\theta+1)^2(58\theta^2+208\theta+201)+2^{26} 3^{6} x^{8}(\theta+1)^2(\theta+2)^2$

Maple   LaTex

Coefficients of the holomorphic solution: 1, 12, 204, 4368, 112140, ...
--> OEIS
Normalized instanton numbers (n0=1): 22/5, 8, 68, 3292/5, 38826/5, ... ; Common denominator:...

#### Discriminant

$(-1+48z)(16z-1)^2(48z-5)^2(12z-1)^3$

#### Local exponents

$0$$\frac{ 1}{ 48}$$\frac{ 1}{ 16}$$\frac{ 1}{ 12}$$\frac{ 5}{ 48}$$\infty$
$0$$0$$0$$0$$0$$1$
$0$$1$$\frac{ 1}{ 2}$$\frac{ 1}{ 2}$$1$$1$
$0$$1$$\frac{ 1}{ 2}$$\frac{ 3}{ 2}$$3$$2$
$0$$2$$1$$2$$4$$2$

#### Note:

This is operator "8.79" from ...