New Number: 2.43 | AESZ: ~77, ~78,~97 | Superseeker: -736 -26911072 | Hash: 3d2cd06eccf32145816b35cb63878900
Degree: 2
\(\theta^4-2^{4} x\left(512\theta^4+1024\theta^3+1208\theta^2+696\theta+153\right)+2^{12} x^{2}(8\theta+7)^2(8\theta+9)^2\)
Maple LaTex Coefficients of the holomorphic solution: 1, 2448, 7779600, 26927622400, 97242114301200, ... --> OEIS Normalized instanton numbers (n0=1): -736, -104512, -26911072, -9061573696, -3547993303456, ... ; Common denominator:...
Discriminant
\((4096z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{6}$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -736, -836832, -726599680, -579941553376, -443499162932736, -330566247539116032, -242217998671338078208,...
Coefficients of the q-coordinate : 0, 1, -1344, 706656, -215652352, 46108515888, -7894967838720, 1022037674254848,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 2}{ 3}\sqrt{ 2}\) | \(-.657917825I\) | \(\frac{ 1}{ 36}\sqrt{ 2}\) | \(0\) |
\(0\) | \(-\frac{ 2}{ 3}\sqrt{ 2}\) | \(0\) | \(\frac{ 1}{ 36}\sqrt{ 2}\) |
\(2\sqrt{ 2}\) | \(0\) | \(-\frac{ 2}{ 3}\sqrt{ 2}\) | \(.657917825I\) |
\(0\) | \(2\sqrt{ 2}\) | \(0\) | \(\frac{ 2}{ 3}\sqrt{ 2}\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data