New Number: 2.49 | AESZ: | Superseeker: -26400 -230398034080 | Hash: ffdc338b55d1f4e1f989f4359b06df6c
Degree: 2
\(\theta^4-2^{4} 3 x\left(4608\theta^4+9216\theta^3+10744\theta^2+6136\theta+1325\right)+2^{12} 3^{2} x^{2}(24\theta+17)(24\theta+23)(24\theta+25)(24\theta+31)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 63600, 5412963600, 504140776339200, 49063316029156400400, ... --> OEIS Normalized instanton numbers (n0=1): -26400, -52511160, -230398034080, -1287524740195200, -8504689433002312800, ... ; Common denominator:...
Discriminant
\((110592z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{12}$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -26400, -420115680, -6220746946560, -82401583792608480, -1063086179125289126400, -13329054201478713820416000, -164763194871262298517410611200,...
Coefficients of the q-coordinate : 0, 1, -40128, 799887456, -11209830459392, 127623510290284080, -1268317275250676520960, 11455455573164588853879296,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1.001734607\) | \(-1.096529708I\) | \(-.2455232e-2\) | \(0\) |
\(0\) | \(-1.001734607\) | \(0\) | \(-.2455232e-2\) |
\(\sqrt{ 2}\) | \(0\) | \(-1.001734607\) | \(1.096529708I\) |
\(0\) | \(\sqrt{ 2}\) | \(0\) | \(1.001734607\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data