New Number: 2.56 | AESZ: 185
| Superseeker: 6 608 | Hash: 80506439e4d4fdc41f5b16e246a69fbf
Degree: 2
\(\theta^4-2 3 x(2\theta+1)^2(3\theta^2+3\theta+1)-2^{2} 3^{3} x^{2}(2\theta+1)(\theta+1)^2(2\theta+3)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 6, 162, 6180, 284130, ... --> OEIS Normalized instanton numbers (n0=1): 6, 93/2, 608, 11754, 275352, ... ; Common denominator:...
Discriminant
\(1-72z-432z^2\)
Local exponents
Note:
Hadamard product $I \ast \zeta$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, 6, 378, 16422, 752634, 34419006, 1595351322, 74451566286,...
Coefficients of the q-coordinate : 0, 1, -18, 27, -36, -22167, -482598, -16710093,...
| Gopakumar-Vafa invariants |
---|
g=0 | 216, 1674, 21888, 423144, 9912672, 265889088, 7814158560, 245812722408,... |
g=1 | 0, 0, 0, 0, 432, 374244, 47016720, 3817401912,... |
g=2 | ,... |
Characteristic classes:
Monodromy (with respect to Frobenius basis)
\(8+480\lambda\) | \(-\frac{ 7}{ 2}-240\lambda\) | \(\frac{ 91}{ 72}+\frac{ 260}{ 3}\lambda\) | \(-.302703484-\frac{ 140}{ 3}\lambda\) |
\(26\) | \(-12\) | \(\frac{ 169}{ 36}\) | \(-\frac{ 91}{ 72}-\frac{ 260}{ 3}\lambda\) |
\(72\) | \(-36\) | \(14\) | \(-\frac{ 7}{ 2}-240\lambda\) |
\(144\) | \(-72\) | \(26\) | \(-6-480\lambda\) |
copy data \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1+120\lambda\) | \(0\) | \(\frac{ 35}{ 3}\lambda\) | \(.9393573e-2\) |
\(\frac{ 7}{ 2}\) | \(1\) | \(\frac{ 49}{ 144}\) | \(-\frac{ 35}{ 3}\lambda\) |
\(0\) | \(0\) | \(1\) | \(0\) |
\(36\) | \(0\) | \(\frac{ 7}{ 2}\) | \(1-120\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(-120\lambda\) | \(\frac{ 19}{ 2}\) | \(1\) | \(1\) |
\(-\frac{ 7}{ 2}\) | \(-18\) | \(-1\) | \(0\) |
\(0\) | \(36\) | \(0\) | \(0\) |
\(-36\) | \(0\) | \(0\) | \(0\) |
copy data