New Number: 2.47 | AESZ: | Superseeker: -3488 -1142687008 | Hash: 413005461e43cfa75125577c2d4c2fde
Degree: 2
\(\theta^4-2^{4} x\left(2048\theta^4+4096\theta^3+4800\theta^2+2752\theta+599\right)+2^{24} x^{2}(4\theta+3)(\theta+1)^2(4\theta+5)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 9584, 121274640, 1675847866112, 24182028281658640, ... --> OEIS Normalized instanton numbers (n0=1): -3488, -1406056, -1142687008, -1211614451216, -1500013956719584, ... ; Common denominator:...
Discriminant
\((16384z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{10}$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -3488, -11251936, -30852552704, -77543336129760, -187501744589951488, -442274176720152856576, -1026300761020352658341888,...
Coefficients of the q-coordinate : 0, 1, -5696, 14731872, -25158641664, 33504667231792, -37915203736676352, 38163064333720814080,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 11}{ 12}\) | \(-152\lambda\) | \(\frac{ 23}{ 288}\) | \(0\) |
\(0\) | \(-\frac{ 11}{ 12}\) | \(0\) | \(\frac{ 23}{ 288}\) |
\(2\) | \(0\) | \(-\frac{ 11}{ 12}\) | \(152\lambda\) |
\(0\) | \(2\) | \(0\) | \(\frac{ 11}{ 12}\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data