New Number: 2.48 | AESZ: ~94 | Superseeker: -1344 -109320512 | Hash: 892e497a83d12667b7f189a3d743fb7c
Degree: 2
\(\theta^4-2^{2} 3 x\left(1152\theta^4+2304\theta^3+2710\theta^2+1558\theta+341\right)+2^{4} 3^{2} x^{2}(24\theta+19)(24\theta+23)(24\theta+25)(24\theta+29)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 4092, 21900060, 127808119824, 778493560064220, ... --> OEIS Normalized instanton numbers (n0=1): -1344, -278040, -109320512, -56290146024, -33748229589312, ... ; Common denominator:...
Discriminant
\((6912z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{11}$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -1344, -2225664, -2951655168, -3602571571200, -4218528698665344, -4817316755559942144, -5409635871970566329856,...
Coefficients of the q-coordinate : 0, 1, -2328, 2278188, -1383422528, 625233942222, -233196156074016, 74363982398450360,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(.918558654\) | \(-.664735808I\) | \(.63788795e-1\) | \(0\) |
\(0\) | \(-\frac{ 3}{ 8}\sqrt{ 2}\sqrt{ 3}\) | \(0\) | \(.63788795e-1\) |
\(\sqrt{ 6}\) | \(0\) | \(-\frac{ 3}{ 8}\sqrt{ 2}\sqrt{ 3}\) | \(.664735808I\) |
\(0\) | \(\sqrt{ 6}\) | \(0\) | \(.918558654\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data