New Number: 2.64 | AESZ: 182 | Superseeker: 1 7 | Hash: 89ba4729efa82413b33fe6928ff8d2c9
Degree: 2
\(\theta^4-x\left(43\theta^4+86\theta^3+77\theta^2+34\theta+6\right)+2^{2} 3 x^{2}(\theta+1)^2(6\theta+5)(6\theta+7)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 6, 66, 924, 14850, ... --> OEIS Normalized instanton numbers (n0=1): 1, 7/4, 7, 40, 270, ... ; Common denominator:...
Discriminant
\((27z-1)(16z-1)\)
Local exponents
Note:
This is operator "2.64" from ...
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, 1, 15, 190, 2575, 33751, 427506, 5356975,...
Coefficients of the q-coordinate : 0, 1, -10, 63, -336, 1399, -6150, 17483,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
Characteristic classes:
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1+96\lambda\) | \(0\) | \(4\lambda\) | \(.1639606e-2\) |
\(\frac{ 11}{ 2}\) | \(1\) | \(\frac{ 11}{ 48}\) | \(-4\lambda\) |
\(0\) | \(0\) | \(1\) | \(0\) |
\(132\) | \(0\) | \(\frac{ 11}{ 2}\) | \(1-96\lambda\) |
copy data \(\frac{ 17}{ 4}+288\lambda\) | \(-\frac{ 13}{ 24}-48\lambda\) | \(\frac{ 13}{ 96}+12\lambda\) | \(-.21754163e-1-\frac{ 52}{ 11}\lambda\) |
\(\frac{ 33}{ 2}\) | \(-\frac{ 7}{ 4}\) | \(\frac{ 11}{ 16}\) | \(-\frac{ 13}{ 96}-12\lambda\) |
\(66\) | \(-11\) | \(\frac{ 15}{ 4}\) | \(-\frac{ 13}{ 24}-48\lambda\) |
\(396\) | \(-66\) | \(\frac{ 33}{ 2}\) | \(-\frac{ 9}{ 4}-288\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(-96\lambda\) | \(\frac{ 55}{ 2}\) | \(1\) | \(1\) |
\(-\frac{ 11}{ 2}\) | \(-66\) | \(-1\) | \(0\) |
\(0\) | \(132\) | \(0\) | \(0\) |
\(-132\) | \(0\) | \(0\) | \(0\) |
copy data