New Number: 2.40 | AESZ: | Superseeker: -791200 -4288711075194400 | Hash: 43d26d7aa358d5634e12c133ddc42a01
Degree: 2
\(\theta^4-2^{4} 5 x\left(80000\theta^4+160000\theta^3+186000\theta^2+106000\theta+22811\right)+2^{16} 5^{6} x^{2}(10\theta+7)(10\theta+9)(10\theta+11)(10\theta+13)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 1824880, 4485741488400, 12079072308276832000, 33999719248816985649610000, ... --> OEIS Normalized instanton numbers (n0=1): -791200, -41486886600, -4288711075194400, -585926703697412494000, -93381074165698184340671200, ... ; Common denominator:...
Discriminant
\((3200000z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{2}$ of AESZ.
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -791200, -331895884000, -115795199031040000, -37499309036966295500000, -11672634270712273042584691200, -3547123999320665533072687182284800, -1060678742965503665390963956416438272000,...
Coefficients of the q-coordinate : 0, 1, -1180480, 712317218400, -305628937322752000, 106814581184582290110000, -32562911531924497607789316096, 9005113062419133863092531588252160,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 35}{ 24}\) | \(-580\lambda\) | \(-\frac{ 649}{ 576}\) | \(0\) |
\(0\) | \(-\frac{ 35}{ 24}\) | \(0\) | \(-\frac{ 649}{ 576}\) |
\(1\) | \(0\) | \(-\frac{ 35}{ 24}\) | \(580\lambda\) |
\(0\) | \(1\) | \(0\) | \(\frac{ 35}{ 24}\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data