New Number: 2.38 | AESZ: 61 | Superseeker: -41184 -5124430612320 | Hash: 191cd9ad5f43862072f3be6811803748
Degree: 2
\(\theta^4-2^{4} 3^{2} x(6\theta+1)(6\theta+5)(72\theta^2+72\theta+31)+2^{12} 3^{8} x^{2}(6\theta+1)(6\theta+5)(6\theta+7)(6\theta+11)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 22320, 2060205840, 248752033770240, 33839074380496104720, ... --> OEIS Normalized instanton numbers (n0=1): -41184, 251271360, -5124430612320, 160031225395327320, -6251395923736354968480, ... ; Common denominator:...
Discriminant
\((186624z-1)^2\)
Local exponents
Note:
This is operator "2.38" from ...
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -41184, 2010129696, -138359626573824, 10241998427311078176, -781424490467044371101184, 60851315398079619187606222848, -4805925794883778752912845168640000,...
Coefficients of the q-coordinate : 0, 1, -123264, 13139063136, -1311887722727424, 126353676794333987376, -11896340286078314472701952, 1102696169721254450477191180800,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 25}{ 48}+62\lambda\) | \(\frac{ 23}{ 32}+31\lambda\) | \(-\frac{ 23}{ 1152}+\frac{ 31}{ 12}\lambda\) | \(.598529843\) |
\(-\frac{ 1}{ 24}\) | \(\frac{ 47}{ 48}\) | \(-\frac{ 1}{ 576}\) | \(-\frac{ 23}{ 1152}-\frac{ 31}{ 12}\lambda\) |
\(-\frac{ 1}{ 2}\) | \(\frac{ 3}{ 4}\) | \(\frac{ 47}{ 48}\) | \(\frac{ 23}{ 32}-31\lambda\) |
\(-1\) | \(-\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 24}\) | \(\frac{ 25}{ 48}-62\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(\frac{ 23}{ 48}-62\lambda\) | \(\frac{ 1}{ 24}\) | \(\frac{ 1}{ 2}\) | \(1\) |
\(\frac{ 1}{ 24}\) | \(0\) | \(-1\) | \(0\) |
\(\frac{ 1}{ 2}\) | \(-1\) | \(0\) | \(0\) |
\(1\) | \(0\) | \(0\) | \(0\) |
copy data