New Number: 2.50 | AESZ: | Superseeker: -201888 -40177844666400 | Hash: 5309f0b5a4362f22faafad07a0eb1bb8
Degree: 2
\(\theta^4-2^{4} 3^{2} x\left(10368\theta^4+20736\theta^3+24048\theta^2+13680\theta+2927\right)+2^{20} 3^{10} x^{2}(\theta+1)^2(3\theta+2)(3\theta+4)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 421488, 241251334416, 151434902650832640, 99396938275247309913360, ... --> OEIS Normalized instanton numbers (n0=1): -201888, -1567499400, -40177844666400, -988883543512335600, -35724019937142805037280, ... ; Common denominator:...
Discriminant
\((746496z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{13}$ of AESZ
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -201888, -12540197088, -1084801806194688, -63288546797329675488, -4465502492142850629861888, -258182216646856855780290103296, -16914211947154270901793424255156224,...
Coefficients of the q-coordinate : 0, 1, -283968, 43688105568, -5012704879896576, 485518167363736868400, -42145587318746541132269568, 3389377748957383965350280086016,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 23}{ 24}\) | \(-Iarctan(\frac{ 809}{ 331})\) | \(\frac{ 47}{ 576}\) | \(0\) |
\(0\) | \(-\frac{ 23}{ 24}\) | \(0\) | \(\frac{ 47}{ 576}\) |
\(1\) | \(0\) | \(-\frac{ 23}{ 24}\) | \(Iarctan(\frac{ 809}{ 331})\) |
\(0\) | \(1\) | \(0\) | \(\frac{ 23}{ 24}\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data