New Number: 2.39 | AESZ: ~80,~81 | Superseeker: -2450 -623291900 | Hash: a4500006693bca99ed7ce6d889944382
Degree: 2
\(\theta^4-2 5 x\left(2500\theta^4+5000\theta^3+5875\theta^2+3375\theta+738\right)+2^{2} 5^{6} x^{2}(5\theta+4)(5\theta+6)(10\theta+9)(10\theta+11)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 7380, 71382150, 753157832000, 8295076883047500, ... --> OEIS Normalized instanton numbers (n0=1): -2450, -1825075/2, -623291900, -559511912750, -584671005670010, ... ; Common denominator:...
Discriminant
\((12500z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{1}$ of AESZ
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -2450, -7302750, -16828883750, -35808769718750, -73083875708753700, -145465451615110411050, -284719047590946617747000,...
Coefficients of the q-coordinate : 0, 1, -4230, 7596525, -8460814500, 6976789016250, -4700627111784846, 2699643205258099660,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(1.024864490\) | \(-.910226992I\) | \(-.22515962e-1\) | \(0\) |
\(0\) | \(-1.024864490\) | \(0\) | \(-.22515962e-1\) |
\(\sqrt{ 5}\) | \(0\) | \(-1.024864490\) | \(.910226992I\) |
\(0\) | \(\sqrt{ 5}\) | \(0\) | \(1.024864490\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data