New Number: 2.42 | AESZ: ~98 | Superseeker: -288 -2339616 | Hash: acfee9d4b5fefd1a945cfa6b1bc61373
Degree: 2
\(\theta^4-2^{2} 3 x\left(288\theta^4+576\theta^3+682\theta^2+394\theta+87\right)+2^{4} 3^{2} x^{2}(12\theta+11)^2(12\theta+13)^2\)
Maple LaTex Coefficients of the holomorphic solution: 1, 1044, 1403100, 2051002800, 3126485684700, ... --> OEIS Normalized instanton numbers (n0=1): -288, -19260, -2339616, -369882612, -67925445408, ... ; Common denominator:...
Discriminant
\((1728z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{5}$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -288, -154368, -63169920, -23672641536, -8490680676288, -2966694863864832, -1018736533347727104,...
Coefficients of the q-coordinate : 0, 1, -552, 110124, -11982784, 856080078, -51663236832, 1031263062200,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 1}{ 2}\sqrt{ 3}\) | \(-.470039198I\) | \(\frac{ 1}{ 24}\sqrt{ 3}\) | \(0\) |
\(0\) | \(-\frac{ 1}{ 2}\sqrt{ 3}\) | \(0\) | \(\frac{ 1}{ 24}\sqrt{ 3}\) |
\(2\sqrt{ 3}\) | \(0\) | \(-\frac{ 1}{ 2}\sqrt{ 3}\) | \(.470039198I\) |
\(0\) | \(2\sqrt{ 3}\) | \(0\) | \(\frac{ 1}{ 2}\sqrt{ 3}\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data